

KAREL JUNIOR PROGRAMMING

COURSE

LESSON PLANS
REVISION: AUGUST 17, 2016

1

Copyright © 2016 NCLab Inc.

2

TABLE OF CONTENTS 2

OVERVIEW 7

EQUIPMENT AND ACCOUNTS REQUIRED; SUGGESTED AGE RANGE FOR STUDENTS 8

TIME REQUIRED AND SUGGESTIONS FOR COURSE DELIVERY 9

CROSS-CUTTING CONCEPTS: MATH AND ELA STANDARDS 10

NEXT GENERATION SCIENCE STANDARDS 11

VOCABULARY, LANGUAGE AND PROGRAM SUPPORTS 13

BACKGROUND BUILDING AND SUPPORT ACTIVITIES 14

DEPTH OF KNOWLEDGE (DOK) AND BLOOM’S TAXONOMY 15

ENRICHMENT, REMEDIATION AND PROGRESS MONITORING 15

ASSESSMENT 16

KAREL JR UNIT 1 17

LESSONS: INTRODUCTION 18

SECTION 1

Students learn to guide Karel using remote control, switch Karel's commands into other languages,
and guide Karel using the keyboard. They also know that the left panel: describes your task, shows
game goals and limitations, shows the counters of steps and operations, and shows elapsed time.

22

USING CREATIVE SUITE TO DESIGN KAREL MAZES AND GAMES

Students learn how to use the Creative Suite to create, save and publish their own Karel games and

mazes.

27

3

SECTION 2

Students learn how to write programs using the commands go, right, left, get, put. They also know

that to write one command per line, and that each commands start at the beginning of line.

38

SECTION 3

Students learn how to use the repeat loop. They also know that the repeat command must be

followed by a number, the body of the loop is indented, and the loop can repeat one or more

commands.

44

SECTION 4

Students learn how to figure out the body of a loop with certainty, write commands before and after

a loop. They also know that to put commands after a loop, their indentation must be canceled.

50

SECTION 5

Students learn how to write programs that have multiple loops, and how to use nested loops. They

also know that indentation increases when loops are nested.

55

KAREL JR UNIT 2 60

SECTION 6

Students learn how to use if-conditions to check for collectible objects, to check for obstacles, and

how to use if-conditions inside of loops. They also know that the body of conditions is indented the

same as the body of loops. Karel can only detect collectible objects which are in his square, and

obstacles which are in the adjacent square.

61

SECTION 7

Students learn how to use the else-branch with if-conditions, and how to use Karel's north sensor.

They also know that the body of the else-branch is indented, the north sensor can be used to make

Karel point North, and the north sensor can be used to make Karel point East, West or South as well.

Conditions may contain other conditions or loops, and loops may contain other loops or conditions.

68

SECTION 8

Students learn how to use the empty sensor to check if Karel's pocket is empty, use keyword not to

reverses the outcome of conditions, use keyword and to make sure that two or more conditions are

satisfied at the same time, and use keyword or to ensure that at least one of multiple conditions is

74

4

satisfied. They also know that it is a good idea to use parentheses in more complex logical

expressions.

SECTION 9

Students learn how to use the while loop. They also know that the while loop is used when the

number of repetitions is not known in advance. With while loops you can use the same sensors as

with if-conditions. The body of while loops is indented same as the body of repeat loops.

80

SECTION 10

Students learn how to navigate a maze where the path goes either forward, to the left, or to the right.

They continue practicing the while loop and combine it with other loops and conditions.

86

KAREL JR UNIT 3 91

SECTION 11

Students learn how to define a custom command using the keyword def and call it in the main

program whenever it is needed. They know that the body of a new command must be indented.

92

SECTION 12

Students learn that a new command should always be tested on a simple task first, and then it can be

safely used as part of a larger program. They also learn advanced maze skills: how to follow a line that

is on Karel’s left, or one that is on Karel’s right.

99

SECTION 13

Students learn that the shortest program may not always be the best. A slightly longer program that is
much faster, is better than a slightly shorter program that takes a lot of time. Students know to break
a complex problem into smaller tasks which are solved first.

104

SECTION 14

Students learn how to create new variables and initialize them with numbers. They use the function

inc() to increase the value of a variable by one, the function dec() to decrease the value of a variable

by one, and the print command to display results. The print command can be used to display the

values of variables while the program is running.

110

5

SECTION 15

Students learn how to define new functions and return values using the keyword return, use functions

inc() and dec() to increase / decrease the value of a variable by more than one. They know that the

value returned from a function can be stored in a variable, and if the returned value is not used, it will

be automatically printed. Any code typed after the return command is dead. Variables defined inside

commands and functions are local, and local variables cannot be used outside of the command or

function where they were defined. Variables created in the main program are global, and global

variables should not be used inside commands and functions.

117

KAREL JR UNIT 4 123

SECTION 16

Students learn how to use the gpsx sensor to determine Karel's horizontal position in the maze, and

use the gpsy sensor to determine Karel's elevation in the maze. They also use the symbols ==, !=, <

and >. They know that gpsx is 0 in the left-most column and 14 on the right-most one, gpsy is 0 in the

bottom row and 11 in the top one. The keyword and ensures that conditions are satisfied at the same

time, and the keyword or makes sure that at least one condition is satisfied. Parentheses should be

used for expressions such as (gpsx == 7), (gpsy < 3).

124

SECTION 17

Students learn how to use Boolean (logical) values True and False, store them in Boolean or logical

variables), return Boolean values from Boolean functions, and use Boolean variables in conditions and

while loops. Students know that Karel's sensors such as wall, nugget, mark, empty, north etc. are

Boolean functions. With Boolean variables they can do logical operations such as and or or. The

symbol = is used to assign a value to a variable, and for mathematical equality ("is equal to") the

symbol == is used. The result of a comparison such as a == b is either True or False.

130

SECTION 18

Students learn how to generate random integers using the function randint(), make Karel repeat

something a random number of times, calculate the maximum and the minimum of a given set of

numbers. They know that the function randint(6) can be used to simulate rolling dice.

136

SECTION 19

Students learn how to create empty and non-empty lists, append items to a list using append(), go

through list items one at a time, and get the length of a list L using len(L). They know that lists are like

variables, but they can hold multiple values.

142

6

SECTION 20

Students learn how to remove and return the last item of a list using pop(), remove and return the

first item of a list using pop(0), get the length of a list using len(), use the for loop to go through lists

one item at a time, and merge lists. They know that list items can be numbers, Boolean variables, and

even text strings. Lists can contain other lists, such as for example [gpsx, gpsy] pairs.

149

KAREL JR UNIT 5 156

SECTION 21

Students learn how to use the function rand to create True or False with 50-50 probability. They use

the function rand in conditions and while loops, and in in maze algorithms. They know that 50-50

probability means that the two events are equally probable, and that rand and rand yields 25-75

probability, which means that the former event is three times less probable than the latter.

157

SECTION 22

Students learn how to use recursion, which is a command or function that calls itself. They know that

recursion is suitable for tasks that can easily be reduced in size, that the recursive call must be placed

in a stopping condition, and that failure to use a stopping condition easily turns recursion into an

infinite loop.

163

SECTION 23

Students review and practice previous sections: how to use stopping conditions in recursion, how to

make the recursive call from inside a stopping condition, how to split complex tasks into simpler ones,

how to use inequalities, how to get the length of a list, how to increase and decrease values, and how

to pop items from lists.

170

SECTION 24

Students practice all their skills from previous sections in more complex tasks.

175

SECTION 25

 Challenging puzzles with complex tasks (optional)

180

7

OVERVIEW

The Karel Jr course is a set of five units designed to teach students computational thinking and the

beginning fundamentals of computer programming. The language itself is a simplified version of Python,

which is used extensively in engineering, science and design work. The basic concepts are common to

all programming languages. By the end of Karel Jr, students will have learned these skills:

1. Algorithmic thinking

2. Typing single commands

3. Running and debugging programs

4. Using counting (repeating) loops, nested loops

5. Using conditional (if-else) statements

6. Using conditional (while) loops

7. Defining and using custom commands

8. Using functions that return values

9. Using local and global variables

10. Using basic operations with Python lists

11. Designing recursive algorithms

Karel can be learned independently or under the guidance of a teacher. The five courses are each

divided into five sections, with seven levels in each section. Each level builds on the previous one.

Tutorials, YouTube videos and hints guide the students. In most levels, the programs are partially

written, so that students can focus on the skill that they are learning. Students are able to run their

programs in their entirety or line-by-line to detect and fix bugs.

Tasks are embedded in a narrative about Sophia and her robot Karel. The graphic interface is colorful

and easy to follow, as the robot responds to commands written and executed by the student.

Although the program stands on its own, the value of the lessons is greatly enhanced by classroom

discussion and solution sharing. There are multiple ways to solve problems, and by comparing solutions,

students will develop logical reasoning, communication skills and creativity.

Once students have learned a few tasks, they will be able to create their own games, tasks and solutions

using the Creative Suite. Creating the games cements the learning and develops a love for

programming. Students can also flex their narrative writing muscles! A good game has a good story.

Students can save games to their own NCLab folder. They can publish and share links to the games.

Games can be submitted to NCLab for display on the Gallery page.

Printable student journals are available for review of concepts and skills, reflection and design.

8

EQUIPMENT AND ACCOUNTS REQUIRED:

● Personal computers or tablets with keyboard functions; Internet access: one per student. Both

PC and MAC platforms are supported. Preferred browsers are Google Chrome or Firefox.

● Projector or Smartboard (optional but recommended) attached to a computer for

demonstration or modeling

● Accounts: The Karel Course requires individual accounts for each student. Visit the FAQ page

for information on free and paid accounts. https://nclab.com/faq/ Have names and passwords

ready on Day 1 to make logging on a smooth process (small cards with this information can be

passed out to each student)

● Progress monitoring: Students accounts associated with a teacher can be progress monitored

from the teacher’s NCLab desktop.

● The teacher textbook can be downloaded as a .pdf file from the Resources page

https://nclab.com/resources/

● Student Journals: available separately as a downloadable .pdf file from NCLab, one per student.

● YouTube videos: some schools block YouTube, so the demonstration videos may need to be

unblocked by an administrator to make them available to students.

● Publishing: Students should have a way to share a link to their games with others, such as a

shared folder on a network drive; class or student wikis, web pages, blogs or email accounts;

commercial networks such as Google Drives or Edmodo; or public social media network such as

Facebook or Twitter.

● Publishing to the NCLab Gallery: students can submit their games to https://nclab.com/karel-

gallery-submit/

● Student work can be viewed at: https://nclab.com/karel-gallery/

SUGGESTED AGE RANGE FOR STUDENTS

Karel Jr is designed to teach students between ages 10-16. The younger students tend to progress more

slowly but can still be successful, especially in Karel 1 and 2. High school students will have more

experience in formal reasoning, problem solving and mathematical functions, which is helpful in

understanding the commands and algorithms in Karel 3, 4 and 5.

https://nclab.com/faq/
https://nclab.com/resources/
https://nclab.com/karel-gallery-submit/
https://nclab.com/karel-gallery-submit/
https://nclab.com/karel-gallery/

9

TIME REQUIRED AND SUGGESTIONS FOR COURSE DELIVERY

There are 175 levels or lessons in Karel Jr. Each of the five units is divided into 5 sections of 7 levels

each. The following lessons are written for each section, with screenshots and notes on the specific

skills in each level within the section. Students will naturally slow down as the coding becomes more

complex. In general, the amount of time required for the course is about 15 hours of actual computer

time. Here are some suggestions for lesson delivery:

● As a camp or workshop to introduce students to the course. This setting allows long stretches

of computer time. In a one-day workshop, students may complete the first two units and have

time to create some simple games using Creative Suite.

● As a self-paced course for independent study, for after school programs, programming clubs,

gifted and talented programs or home study. Students are more likely to complete the course if

they are encouraged and supported by adults, and if they have the opportunity to publish their

own games.

● As part of an elective computer programming class at the middle school or high school level.

Karel Jr is comprehensive and rigorous. Students who complete all five units will have been

introduced to all the basic tools of programming.

● As mini-lessons of about 20-30 minutes each, addressing one or two levels at a time. This might

be a good option as a supplement to regular math instruction in upper elementary and middle

school where time is a premium. At this rate, students may only complete Karel 1 and 2.

However, spreading out the lessons may be more successful at reaching students from a

broader range of ability and background, because the course is chunked into smaller segments

with teacher and peer support.

A separate pacing guide is available for the course.

10

CROSS-CUTTING CONCEPTS: MATH AND ELA STANDARDS

Math Content Standards: There is no particular math content prerequisite for this course other than a

basic understanding of arithmetic and algebraic relationships. Students will learn new concepts as they

go through the course, which can be correlated to Common Core content standards as follows:

Unit, Section, Level Concept or Skill Content Standard

Karel 1 Section 1-5 Develop fundamentals of
writing code, including repeat
loops and nested loops.

OA.C Patterns and relationships
(3rd grade onward)

Karel 2 Sections 6-10 Use conditions, logical
operators

OA. A, EE.A, 1,2,3 Expressions
and equations, algebraic
relationships (5th grade onward)

Karel 3 Sections 11-15 Define functions and use
variables within operations to
count, and to increase or
decrease a function.

8.F.A.1; Understand functions
and variables.
HS.F.BF.A.1 Determine,
combine and compose
functions.

Karel 4 Sections 16-20 Continue developing use of
functions, variables. Define,
retrieve and output specific
data. Use random number
generators.

HS.F.BF.A.1 Determine,
combine and compose
functions.
HSS.MD.A.1,7, B6. Define and
use random variables; display
output.

Karel 5 Sections 21-24 Use recursion. HS.F.BF.A.1,2,3. Building and
interpreting recursive functions.

Math Process Standards: Students will develop good math process skills as they learn to write code. In

fact, all of the Common Core Standards for Mathematical Practices apply, so students may very well

improve in their regular math studies as a result.

SMP 1: Make sense of problems and persevere in solving them.

● Each lesson is presented as a problem or puzzle to be solved. Students can test their programs

instantly, as they go. This feedback encourages them to correct errors and continue until the

task is completely solved.

SMP 2: Reason abstractly and quantitatively.

● Students learn how to write logical command sequences, including conditions and repeated

routines (loops and nested loops)

SMP 3: Construct viable arguments and critique the reasoning of others.

● In the search for code that meets or beats the criteria, students naturally engage in discussions

about the best way to solve a puzzle. They often help each other uncover errors. Class

discussions and journals enhance this communication.

SMP 4: Model with mathematics.

11

● Coding, by its very nature, is translating actions, conditions and goals into defined terms and

symbols.

SMP 5: Use appropriate tools strategically.

● Students have to choose the most effective commands and sequences needed to solve the

problem. Subroutines (loops), conditions, and commands are selected to create code that is

efficient, robust, readable and flexible.

SMP 6: Attend to precision.

● Programs will not run correctly if there are any logical or syntax errors.

SMP 7: Look for and make use of structure.

● To solve a puzzle, students must break down a task into logical steps.

SMP 8: Look for and express regularity in repeated reasoning.

● Patterns are the key to writing repeated loops, nested loops and conditions.

English Language Arts Student journals, discourse and game creation are all opportunities to practice

language skills.

 W.x.1: Argumentative writing: Students evaluate, compare or defend a method of problem

solving.

 W.x.2: Informational writing: Students write explanations of reasoning, instructions for their

own games.

 W.x.3: Narrative writing: Students write short stories to provide context for their games.

 W.x.6: Students use technology to publish and share writing.

 W.x.10: Students write routinely … for a range of discipline-specific tasks, purposes, and

audiences.

 SL.x.1: Students engage in collaborative discussions, building on each other’s ideas.

 L.x.1, 2: Students must use precise syntax, grammar, spelling and punctuation in programming,

or their programs will not run. Indirectly, students may improve their use of these skills in other

academic tasks.

NEXT GENERATION SCIENCE STANDARDS (NGSS)

NGSS is built on three dimensions: Scientific and Engineering Practices (SEP), Disciplinary Core Ideas

(DCI), and Cross-Cutting Concepts (CCC).

Learning to write code using Karel develops skills in engineering practices and cross-cutting concepts. By

writing their own code in Creative Suite, students develop models that could be applied in data

collection, storage and retrieval, measurement, search functions, and other areas.

Scientific and engineering practices exercised in Karel are

12

SEP 2: Developing and using models. Since Karel programs use functions and variables, students are

learning coding habits that will lead them to develop testing models.

SEP 5: Using mathematics and computational thinking. Karel helps students make sense of concepts in

algebra. Students create visual representations and output lists of these functions.

Cross-cutting concepts are valuable tools that can be used to link the skills learned in Karel with fields of

scientific and engineering. The main cross-cutting concepts in Karel are

CCC 1: Patterns. Observed patterns of forms and events guide organization and classification, and they

prompt questions about relationships and the factors that influence them. Students design loops based

on patterns. Students can use their skills to build models of repeated patterns found in natural and

man-made systems and procedures.

CCC 4: Systems and system models. Defining the system under study—specifying its boundaries and

making explicit a model of that system—provides tools for understanding and testing ideas that are

applicable throughout science and engineering. Students are learning how to create models, which can

be then be applied to real world problems.

Engineering Design (ETS1, 2, 3): Students apply what they learn in each Section to create a game. In

the process, they are learning how to define, design and optimize.

From the NGSS website:

The core idea of engineering design includes three component ideas:

A. Defining and delimiting engineering problems involves stating the problem to be solved as clearly as

possible in terms of criteria for success, and constraints or limits.

B. Designing solutions to engineering problems begins with generating a number of different possible

solutions, then evaluating potential solutions to see which ones best meet the criteria and constraints of

the problem.

C. Optimizing the design solution involves a process in which solutions are systematically tested and

refined and the final design is improved by trading off less important features for those that are more

important.

How Karel Jr fits this model:

● The course sets criteria and constraints (for example, students may need to solve a problem

with a limited number of steps or lines).

● Students look for the best solutions with the simplest, most efficient and robust code. The

program can be tested on different mazes to see if it holds true under all conditions.

● Once students develop some proficiency, they can design their own mazes, problems and

solutions.

To view the Engineering Design in the NGSS document in detail:

http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-

%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf

http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf
http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf

13

VOCABULARY, LANGUAGE AND PROGRAM SUPPORTS

● Program and Story Line: Text complexity (Lexile score) is about 620-850L, suitable for 3rd to 4th grade

upwards. There is picture support for the story line.

● YouTube videos: demonstrate steps learned in the lesson. Links are listed within the lessons.

● The Settings drop down menu enables the user to adjust robot speed, choose colors and indentations

and turn sound on and off.

● Text size can be adjusted for readability.

● Instant feedback: Karel’s actions in the maze provide instant feedback.

● Hints: The user can select hints from the menu to help solve the problem.

● Textbook: The textbook is geared to teachers and advanced students. It provides more detailed

explanation of functions and terminology.

● Vocabulary: many commands are Tier I or Tier II words that have a specific Tier III function. These are

noted under each section.

● Student Journal: a journal is provided for concept and vocabulary review, and reflections on learning. It

includes sketch pages to design programs while offline.

● Language Options: A Code

Language button is located at

the bottom center of the screen

and can be toggled to one of

several languages.

14

BACKGROUND-BUILDING AND SUPPORT ACTIVITIES

● Hour of Code (https://code.org/learn): As a warm-up to Karel, students can benefit by

exploring free Drag and Drop programming games found at Hour of Code.

● Act It Out: Students can physically walk out the steps and turns in a program, especially

effective in a room with a tiled floor or carpet squares. Students can work with a partner, with

one person calling out commands and the other person acting them out.

● Gameboard: Using a Lego figure and centimeter or ½ inch square graph paper, draw the

pathway and walk the steps and turns.

● Map and Compass work: An understanding of compass cardinal points will help students to

orient Karel in the maze.

● Paper and Pencil or Online Mazes (caution: online mazes use the arrow keys differently than

the way they are used in the program).

● Student Journal Sharing. Journaling provides an opportunity to reflect on learning and deepen

understanding of concepts and procedures. It is a place to imagine new designs and programs.

All of this can be shared as partners, small groups or whole class.

● Failure is an Option. After students have passed a level, have them change a line in their

 program that would make it fail. Rotate the students to a different work station. Can they find

 the error? This is a great team exercise.

● Robots in Action.

● Bring a Roomba to clean the classroom. What “decisions” is the robot making?

● Play with robotic toys and remote control vehicles. How are these controlled? Visualize

 the command sequences as lines of programming.

● On-line videos. Many robotics companies post videos of their industrial robots in

 action, which are great examples of get and put commands. Robots are being

 developed for the military and public safety to navigate a hazardous situation, detect

 explosives, move supplies, and so forth. Robotic arms and other prostheses also use

 commands similar to those in Karel.

● Video and Board Games. Have students describe a scenario in one of their favorite video or

 board games in terms of commands and functions.

https://code.org/learn

15

DEPTH OF KNOWLEDGE

Most problems in the lower levels have one solution given the parameters; a few problems can be

solved with more than one pathway (Depth of Knowledge 1 and 2). The upper levels provide more

opportunities to analyze and choose solutions (DOK 2 to 4). Using Creative Suite, DOK 3 and 4 level

problems can be created and solved.

BLOOM’S TAXONOMY

● Application and Analysis: Students must analyze the maze and problem parameters to come up

with a solution. Students immediately apply what they are learning at each stage by writing a

program.

● Synthesis and Creation: Students can create mazes and their own problems and solutions using

the Creativity Suite, bringing together all the skills they have learned.

ENRICHMENT, REMEDIATION AND PROGRESS MONITORING

● Since the course is self-paced, students can move through the lessons based on their own rate

of learning.

● Students must unlock the next levels, so it is not possible to race through or “cherry pick” the

program without successfully completing each stage.

● Steps can be repeated at any time for review and reinforcement.

● Teachers should monitor and provide support as needed. At some point, most students will hit

their own personal threshold level in which they aren’t immediately successful. Point out the

built-in hints and comment line prompts within the program. Follow up with discussions about

what they learned from these hints.

● In a camp or workshop setting, it is important to build in physical breaks. Students tend to stay

longer than they should in front of the computer.

● In any setting, encourage opportunities to interact and discuss progress.

● In Creative Suite, set challenges for students. For example: “Design a program that requires a

repeat loop, at least two turns, and retrieving 4 objects.”

16

ASSESSMENT

Assessment built into the program:

● Within each level, students get immediate feedback by trying out their program in the maze.

The program will show what line is causing problems.

● Upon successful completion of a level, students will unlock the next level. Likewise, upon

successful completion of each section, students will receive a certificate and unlock the next

section.

● Teachers can monitor the progress of their students by clicking on the My School apple. This

opens a new window.

Journals: A Student Journal is included in the course materials and can be used as a portfolio artifact.

Quizzes: Students can complete paper and pencil or online quizzes (in development).

Games as assessments: Students can create games using the Creative Suite and save them to their

NCLab folders. One game assessment is included in this document for each Section.

Student Feedback: At the end of each level, students are asked to evaluate the level of difficulty by

clicking on an EASY, MEDIUM or HARD button. This gives the NCLab designers valuable feedback for

improving games.

17

KAREL JR UNIT 1

Karel 1 Overview: Car companies use robotic arms to spot weld automobiles on an assembly line. The military

uses mobile robots to detect explosives. 3D printers print precise models of buildings, ears, and even pizza.

What do all of them need? Instructions! The machines need to move, to pick up and place objects, to detect

and move around obstacles. Many of their functions have to be repeated over and over again. In Karel 1,

students learn how to direct the movements of Karel, how to pick up and place objects, and how to write repeat

loops. They also learn the layout of the course, how to create their own programs, and the basic syntax of code

writing.

SECTION 1: Students learn to guide Karel using remote control, switch Karel's commands into other languages, and

guide Karel using the keyboard. They also know that the left panel: describes your task, shows game goals and

limitations, shows the counters of steps and operations, and shows elapsed time.

INTRODUCTION TO CREATIVE SUITE: Students learn how to use the Creative Suite to create, save and publish their

own Karel games and mazes.

SECTION 2: Students learn how to write programs using the commands go, right, left, get, put. They also know

that to write one command per line, and that each commands start at the beginning of line.

SECTION 3: Students learn how to use the repeat loop. They also know that the repeat command must be

followed by a number, the body of the loop is indented, and the loop can repeat one or more commands.

SECTION 4: Students learn how to figure out the body of a loop with certainty, write commands before and after a

loop. They also know that to put commands after a loop, their indentation must be canceled.

SECTION 5: Students learn how to write programs that have multiple loops, and how to use nested loops. They

also know that indentation increases when loops are nested.

18

LESSONS

Note: The best way to prepare for these lessons is to do them as a user either ahead of time

or alongside the students. When you set up your teacher account, you will have access to the

unlocked course, so that you can jump in on any level. You will also receive a link to answer

keys for all levels.

INTRODUCTION TO THE COURSE (ABOUT 20 MIN UTES)

In the very first session, allow for time to log in the students and show them where the course is located

on the desktop. Demonstrate the log in steps and first lesson on a computer (for larger classes, attached

to a projector or Smartboard if available).

Background knowledge/Introductory Set/Purpose:

● Build background knowledge by showing a video of industrial robots, and discussing how the

robot is controlled (movement, actions (welding, painting, picking a part and installing it)

● Do a warm-up activity such as playing with remote control cars or toy robots and discussing how

they are controlled.

● Use information from the Preface and Introduction of the built-in textbook to introduce the

history and purpose of Karel programming.

● The purpose of the whole Karel course (Karel 1 to 5) is to learn:

● Algorithmic thinking

● Typing single commands

● Running and debugging programs

● Using counting (repeating) loops, nested loops

● Using conditional (if-else) statements

● Using conditional (while) loops

● Defining and using custom commands

● Using functions that return values

● Using local and global variables

● Using basic operations with Python lists

● Designing recursive algorithms

● Solving advanced problems using the skills learned.

● In the first unit, Karel 1, students learn to guide the robot, type simple programs, recognize

 repeating patterns, and use the repeat loop.

● Demonstrate how to log on and navigate the desktop. Provide names and passwords to

 the students.

19

How to Log in and Navigate the Desktop:

Step 1:

Log in to account

https://desktop.nclab.com/.

Select “Courses” (click on icon

on the left side of the screen,

or on the pull-up menu on the

bottom bar).

Step 2. Select Karel Jr and then

Karel Jr 1.

Select the Section 1, then Level 1.1.

Students will only have access

to Section 1, Level 1.1 to start.

The other levels will unlock as

they progress.

Each section and level starts with a screen that introduces the storyline for that section.

https://desktop.nclab.com/

20

Each section includes videos

that demonstrate the concepts

and skills needed to complete

that section.

The video for Section 1 (3 min.

34 sec.) demonstrates what will

be learned in this section.

http://youtu.be/R3F_jaiOeg4

Play the video or demonstrate

the steps on the following

screens.

In Manual Mode, Karel can be

controlled by pressing the

buttons on the screen.

There are buttons for left, go,

right, get, and put.

The next screen shows the

native language button, which

normally appears at the

bottom center of the screen.

When it is there, students can

use the button to select one of

several languages for the

commands.

The other way to control Karel

in Manual Mode is to use the

keyboard.

Left arrow = left,

Up arrow = go

Right arrow = right

CTRL/CMD = put

SHIFT = get

http://youtu.be/R3F_jaiOeg4

21

This is the first game. Here is a guide to some of

the features available on the screen.

Students should try this on their own, using the buttons or keystrokes. Check to see if students are

viewing the arrows from the robot’s point of view.

Once successful, students will

see this screen. They can rate

the task and see their elapsed

time, number of operations

done and steps made.

The left hand side contains

instructions, hints and any

restrictions, such as the

maximum number of steps,

operations, or lines of

programming, the number

and type of objects to

collect or place.

Review the video at

any time by pressing

the red button

A counter that

displays the number

of objects in Karel’s

“pocket”

Colored tab. If

there is more than

one version of the

game each one can

be accessed by

selecting its tab.)

Counters for number of

operations, steps, and

elapsed time

Language

selector

Reset button

to reset the

game

Manual control buttons Home square Karel

Drop down menus for help

functions, settings, and

textbook sections.

22

SECTION 1: LEVELS 1.1-1.7

Objectives: Students learn to guide Karel using remote control, switch Karel's commands into other

languages, and guide Karel using the keyboard. They also know that the left panel: describes your task,

shows game goals and limitations, shows the counters of steps and operations, and shows elapsed time.

Vocabulary:

Command words: go, left, right, get, put

 Directional commands (go, left, right) are always from the robot’s point of view.

 go advances the robot one step

 left turns the robot to its left.

 right turns the robot to its right.

 Retrieving and placing objects (get, put)

 get picks up an object

 put places an object

 Tier I words used in programming: home, max, collect, object, step

Simple words have specific meaning in the context of programming and may need explanation

Home is the destination square, marked by red diagonal stripes which change to green when

Karel approaches the square. The word home is also used in conjunction with commands.

Max may refer to maximum number of steps, operations, or programming lines.

Steps are the number of squares that Karel moves. The shoe icon counts the number of

steps.

Operations are anything that Karel does: move, turn, pick up or put down objects. The

computer icon counts the number of operations.

Objects are items placed in the maze. (The word “object” can have other connotations in

programming that are not used here).

Time required:

Once students have learned how to log into the Desktop and select their course, most will complete

Section 1 in about 30 minutes. This section requires no code writing and simply introduces students to

the movements of the robot, and simple get and put commands. Most students will already be familiar

with mouse and keyboard movement and game-based learning.

Prerequisite skills:

Introduction to the Course

23

Reading and writing: Students should be able to read text at a 3rd grade level

Computer skills: basic keyboard and mouse skills. From Section 2 onward, commands are typed.

Math: Coding at this level encourages math processing skills such as pattern recognition and problem

solving. Numerical calculations are not needed.

Introduction (5 minutes)

Students will have been introduced to the program and the beginning screens of Section 1 during the

Introduction to the Course.

Explain to students that they will be learning how to move the robot, pick up and put down objects, first

with the mouse or keyboard buttons, then by creating a program with typed commands.

Students will find this section to be fairly simple and should move through it quickly.

Their assessment will be to create their own game once they have completed the section. The

directions for using Creative Suite to create games are at the end of Section 1.

Individual/Group practice: (approximately 20 – 30 minutes)

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Levels 1.1-1.7 (Manual Mode)

1.1 Karel goes to the home

square, collecting the ball and apple

along the way.

Number of steps: 10

Commands: go, left, right,

get

1.2 Karel goes to the home

square, collecting the chip and placing

it in the bag, and collecting the candy

and placing it in the basket.

Number of steps: 14

Commands: go, get, put

24

1.3 Karel goes through the corn

maze to the home square, collecting one

corn and one pumpkin on the way. There

are multiple pathways, but only one with

25 steps.

Number of steps: 25

Commands: go, left, right,

get

1.4 Karel collects all the gold

nuggets in the maze and goes home.

Students must figure out the most

efficient path. They will learn to

reverse direction by turning twice.

Number of steps: 20

Commands: go, left, right,

get

1.5 Karel puts snakes and spiders

into boxes and goes home.

Number of steps: 10

Commands: go, left, right,

get, put

This level includes all 5 commands

25

1.6 Fire! (30 steps)

Karel moves 4 barrels from one side of

the firewall to marks on the other side

and goes home.

Number of steps: 30

Commands: go, left, right,

get, put

There are multiple solutions

(pathways)

1.7 Karel collects 12 flowers for

Sophia. He must negotiate the garden

wall, and follow a certain pattern to

minimize his steps.

Number of steps: 13

Commands: go, left, right,

get

Upon completion of 1.7, students will see this screen that

summarizes the concepts and skills learned in Section 1.

They will receive their White Belt certificate on the next

screen. Section 2 will be unlocked.

Suggested questions for post-session discussion (students can use their journals to write down their

ideas and responses) (10-20 minutes):

Describe the movement commands used to move the robot. What are their limitations?

 move forward (go, only one step at a time)

 change directions (left, right, only 90 degrees)

 move backward (Karel can’t move backward, but he can turn around using right/right or

 left/left)

How can you plan the number of steps to stay less than or equal to the maximum allowed?

26

With a partner, discuss at least two different pathways through the maze to complete Fire!

What pattern was needed to complete Flowers within 13 steps? Would you have chosen this pattern

without the fences to guide you?

Assessment:

Within the program itself, students receive a printable White Belt certificate upon successful completion

of Section 1.

At the end of Section 1, introduce students to the Creative Suite (see below). Having students create a

game using the suite is a good way to assess their progress, and it makes programming real! Allow a

separate lesson block for teaching and practicing Creative Suite (about 50 minutes)

See the Assessment section for other journal and project ideas.

27

USING CREATIVE SUITE TO DESIGN KAREL MAZES AND GAMES

Creating mazes and games with the Creative Suite serves several functions and is strongly

recommended as a course component.

 By stopping at the end of each section to create a game, students become active programmers.

 Since creating a game is open-ended, students of all abilities are free to make games as simple

or complex as they desire within the given parameters.

 The games are an artifact that can be used as part of a portfolio for the course.

 Students have the opportunity to publish their games on the NCLab website.

BASIC INSTRUCTIONS:

● Click on “Creative Suite” from the menu on the left side of the Desktop.

● Click on “Programming”

● Click on “Karel the Robot”

● Programs can be written under the programming tab

● Mazes can be created under the designer tab

● Games can be created with the maze

● All files should be saved to the student/user folder on the NCLab Server

● Files can be edited at any time.

CARDS:

A set of printable instruction cards is included at the end of this lesson.

28

CREATIVE SUITE LESSON

STEP 1: Start by showing students how to navigate to the folder

Select “Creative Suite” from the menu on the left side of the Desktop or from the pull-up menu at the

bottom of the screen.

From the menu, select “Programming

From the next menu, select “Karel the Robot”

STEP 2: Exploring the different tabs

The screen opens in Programming

Mode with a demo file that can be

played. Note that it says Untitled at

the top. The user is prompted to save

the file before closing the screen.

Explore the other heading tabs

(Manual Mode, Designer, Games)

or

29

Manual mode allows the user to

use keystrokes to navigate the

maze, like they did in Section 1.

Although this may seem like a just

a precursor skill to be replaced by

typed commands, manual mode

simulates the way most machines

are controlled: by pressing

buttons.

Designer mode is used to create a

maze.

Students will enjoy selecting

objects, backgrounds and walls to

build their own mazes. They

should be given some time to play

with this screen. Card 1 explains

how to use this screen.

 Karel and the Home Square can be moved simply by drag and drop.

The first four buttons allow

the user to change the

Theme, Obstacles, Objects

and Containers

The next five buttons are

editors: “Remove Object”,

“Clear”, “Place Elements

Randomly”, “Undo”,

“Redo”

The last two buttons are

the commands “Turn

Left” Turn Right” which

can be used to rotate the

starting position of Karel.

30

STEP 3: Show students how to save the maze to their NCLab folders .

Once students have created a maze in Designer Mode that they

want to keep, they can save it to their NCLab folder.

Card 2 explains these steps.

To save the file:

 Pull down the File menu

 Select “Save in NCLab”

 The next screen will display the student’s Home Folder.

 Create a file name for the maze and press OK.

STEP 4: Create a working game.

Students may want to create a copy

of their maze and save it so that the

same maze can be used for different

games.

 To do this, select “Create a copy”

from the File menu and save it to a

different file name.

To create a game from a maze, pull

down the File menu and select

“Convert to game worksheet”. The

program will prompt “Are you sure?”.

Select “Yes” to proceed.

A new screen will pop up.

Select “Edit game” from the top menu to bring up the editing screen.

The Summary tab allows the student

to create instructions. This is also an

opportunity to create a short

narrative or story line. It has several

word processing features, including

inserting a picture or video.

31

The Goals tab allows the student to create the goals of the game.

● Mode: The first time students

create a game (i.e. at the end of

Section 1), select Manual

mode, since the students have

not yet learned to write code.

● Steps: Set the number of steps

(i.e. the number of squares

Karel will step on in the maze).

You may want to have students

leave this blank for now and fill

it in after they have run the

game and see the results. Or

you could specify the number of steps as part of the assignment.

● Max Operations: Set the maximum number of operations. This includes not only forward

movement, but also turn, get and put commands. This may also be left blank initially.

● Objects to Collect: Either set the number of objects to collect, or select the box to collect all

objects. At the beginning, it is best to set a limited number of objects.

● Save: Once the goals have been created, click the Save button.

Step 5: Running and Testing the Game

For this first game, go to the Manual Screen.

● Run the game.

● If the game is successfully completed, the exit screen will show this. If not, the “Try Again”

screen will appear.

● The number of operations, steps, objects collected, and elapsed time will be displayed.

● Students can return to the editing screen to modify goals and summary at any time.

Step 6: Publish the Game (Optional)

● This is done from the main

screen. If you do not see the

File tab, close the game and

reopen it.

● Select “Publish to the Web”

● Choose the Status option. For the first game, select “View and Run”, unless students are

collaborating on a game. Most students will not appreciate someone else editing their first

game. They will however, benefit from feedback if other students have permission to run it.The

ability to share will depend on what structures are set up at the school (see page 3 for

suggestions)

32

Suggestions for the First Game Assignment:

To reflect what was learned in Section 1, the game should contain

● Opportunities to use the go, turn left, turn right, get and put buttons.

● A maze with a theme, walls that require Karel to turn left and right, objects to “get” and

containers to “put” the objects in.

● A short narrative that describes the objectives of the game.

● A specified number of objects to collect.

If time is limited, keep the number of steps, objects and containers low.

To enhance student independence, keep the instructions to a minimum.

Encourage students to use the Help menu if they are not sure what to do.

For students who need extra support:

● Show them the next step needed.

● Print the help cards with visual support for each stage (Create a Maze, Save to Folder, Convert

to Game, Edit Game, Test Game, Publish Game)

● Partner them with another student.

● Decrease the number of steps or objectives. (e.g. “Collect one spider and go home.”)

For students who need a challenge:

● Have them create an imaginative narrative to include in their summary.

● Create more than one path to the home square that will meet the objective, or create paths that

will meet the number of steps or operations and others that won’t.

● Create more than one set of objects and containers, so that the player has to think about and

choose which ones to use in order to keep the number of steps or operations under the

maximum.

33

Section 1 Assignment

END OF SECTION 1: CREATE A GAME FOR KAREL (25 POINTS)

Create and publish a game for Karel in Manual Mode

.

● The game will require the player to Go, Turn Left, Turn Right, Get and Put. (5 points)

● The number of steps should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

34

Support Cards for students who need step-by-step directions

Card 1

1. CREATE YOUR MAZE.

CLEAR THE SCREEN USING THE ERASER IF YOU WANT TO START FROM SCRATCH.

SELECT A THEME (EXAMPLE GARDEN, FORTRESS)

DECIDE WHERE YOU WANT KAREL TO START. DRAG HIM TO THAT SPOT.

TURN HIM IF YOU NEED TO WITH THE ARROW KE YS.

DECIDE WHERE THE HOME SQUARE WILL BE. DRAG THE SQUARE TO THAT SPOT.

SELECT AND PLACE THE WALLS.

SELECT AND PLACE THE OBJECTS YOU WANT KAREL TO COLLECT.

SELECT AND PLACE THE CONTAINERS.

DELETE AN OBJECT

UNDO OR REDO YOUR LAST MOVE

35

Card 2

2. SAVE YOUR MAZE TO A FOLDER.

 Go to the File Menu.

 Select Save in NCLab Type your Maze name in the Name box. Press OK.

Card 3

3. CONVERT TO GAME.

 Go to File Menu.

 Select “Convert to game worksheet”

 Select “Yes”

The “Edit game” Menu will now appear at the top of the screen.

36

Card 4

4. EDIT GAME.

Select “Edit game.”

Write instructions for the player on this Summary screen.

What does Karel need to do?

Include the maximum number of steps or operations.

You can make this part of a story about Karel. “Help! Karel
needs seven gold keys to unlock the doors from the prison and escape the fortress!”

Set the Goals on the Goals screen.

Select Manual or Programming (Manual for the Section 1
game).

Select or type in the number of operations and steps. (if you don’t know these, you can fill them in
after you have tested the game. The screen will tell you how many you took.)

Select or type in the number of objects to collect, or check the box to collect all objects. Check the
container box if the player has to fill all the containers.

Type in the maximum number of lines of programming if the player needs to write and run a program

 (this can be done after you test the program)

 Don’t forget to Save!

37

Card 5

5. TEST AND EDIT YOUR GAME

After you have saved your game, you can try it out to see if it works the way you want it to.

Press the Play button on the top menu to begin. If your game is Manual only, it will go to that screen.
Otherwise, choose Programming or Manual to begin. Play the game.

If you win, the screen will show Karel with a trophy. It will list the number of steps, operations and
objects collected, as well as how long it took.

If you fail, the screen will tell you if you took too many steps or operations or missed picking up some
objects.

You can exit Play mode and go back to Edit mode any time to make changes to your Goals and
Summary.

You can go to Designer to change elements in your Maze.

 Always save after you are done

Card 6

6. PUBLISH YOUR GAME.

From the File menu, select “Publish to the web”

Choose one:

Anyone can view.

Anyone can view and run (choose this
one for the Section 1 game).

Anyone can view, edit, and run.

Press OK when done.

38

SECTION 2: LEVELS 2.1-2.7

Objectives: Students learn how to write programs using the commands go, right, left, get, put. They

also know that to write one command per line, and that each commands start at the beginning of line.

Vocabulary:

 Programming terms: command, operation, lines of code

Command words: go, left, right, get, put

 Directional commands (go, left, right) are always from the robot’s point of

 view.

 go advances the robot one step.

 left turns the robot to its left.

 right turns the robot to its right.

 Retrieving and placing objects (get, put)

 get picks up an object.

 put places an object.

 Tier I words used in programming: home, max, collect, object, step

Simple words have specific meaning in the context of programming and may need explanation

Prerequisite skills: Completion of Section 1 and familiarity with keyboard.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in one to two hours.

Background knowledge/Introductory Set/Purpose:

Review: Explain the concepts of code and programming language. How do we define get, go,

left, put and right in terms of programming?

 Example: Go means “Move forward one step”.

How to write code: show video (follow link on second screen of 2.1 or here

https://youtu.be/s4EwI1p2wX0) which explains how to type the code, how to run the program either all

at once or step by step, and the importance of writing code at the beginning of the line, spelling

correctly and only writing one command on each line.

Big Idea: Why do we need to write programs for computers? Basically, computers need instructions for

everything they do.

Purpose: Section 2 (Levels 2.1-2.7) introduces writing programs of one-command lines of code using

get, go, left, put, and right to complete a series of tasks.

https://youtu.be/s4EwI1p2wX0

39

Direct Instruction and Modeling:

The video models how to type commands and execute the programs. Alternatively, Level 2.1 can be

stepped through as a demonstration. Most sections include step-through demonstration levels. The

program is already written and the black arrow at the bottom of the screen is used to step through each

line of programming to see how the program works.

Students will always be given the maximum number of lines needed by the program, and the command

words that must be included. Most programs can be written with less than the maximum number of

lines. Some levels issue a challenge to students: “10 lines is good, 7 lines is awesome!”

Most levels have some of the code already written. Students may only need to type in code on lines

marked with three dots The dotted lines focus students’ attention on the particular skill being

taught and should make progress easier. In other cases, students have to insert several lines of code.

Remind students to read the instructional screens in each level.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 2.1-2.7

2.1 (Step Through Demonstration)

Karel goes to the home square.

Commands: go, left, right

Students step through the code, one

line at a time, by pressing the black

arrow. They will observe what Karel

is doing in response to the

commands.

Question: Can you tell the difference

between a step and an operation?

2.2 2.2 opens with an instructional screen explains

that only one command can be written on each line and

demonstrates the right and wrong way to write the

commands.

40

Commands:, go, left, right

Students will run the program first to

see the effect of the syntax error,

then repair the code and run the

program again. There are two lines

with two commands on them: the

second command must be moved to

its own line.

2.3 2.3 opens with an instructional screen explains

that commands must always start at the beginning of the

line, and demonstrates the right and wrong way to write

the commands.

Commands: go, left, right

Students will run the program first to

see the effect of the syntax error,

then repair the code and run the

program again. There are several

lines with improper indentation:

students repair these lines and run

the program again.

2.4 Students write code that gets

Karel to the home square.

Number of lines: 8

Commands: go, left, right

41

2.5 (Step Through Demonstration)

 This level demonstrates the get and

put commands.

Commands: go, left, right,

get, put

Students step through the code, one

line at a time, by pressing the black

arrow. They will observe what Karel is

doing in response to the commands.

2.6 Karel must pick up the chip and put it in the vault, then pick up the watch and go home.

 Lines: not limited, 9 lines are

sufficient.

Commands: get, go, left,

put, right

Students start by replacing all the dots

with the eraser (clear code), which

erases all the code on the screen

below.

Then they write their own program to

complete the tasks and send Karel

home.

2.7 Karel must move the phone on the mark and enter the home square.

Lines: not limited. 14 lines are

sufficient.

Commands: get, go, left, put,

right

This time there are only 10 lines in the

code template, which won’t be enough.

The instruction screen explains how to

insert new lines by pressing

SHIFT+ENTER:

42

Upon successful completion of 2.7, students will see

this message, summarizing the skills and concepts

learned in Section 2. On the following screen, they

will receive their next certificate. Section 3 will now

be unlocked.

Possible questions for post-session discussion:

Big Question: Why do we need to write programs for computers?

What parts were easy to do? What was frustrating?

What real life tasks could a robot do with these commands?

What real life problems could be solved by programming a computer?

What is the difference between steps and operations? (Steps are the number of squares that Karel

moves. Operations includes all the things he does – (go, left, right, get, put).

Assessment:

Students will receive a printable “Yellow Belt” certificate upon completion of Section 2. See Assessment

section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. The number of lines can be specified: for example, between 10

and 25 lines. Inform students where they will share their game. Remind them that the names of the

objects must be used as sensor words when writing the program.

43

END OF SECTION 2: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and containers. (10 points)

● The game must include steps that can be solved by using the commands get, go,left,

put and right in the program. (5 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (8 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

44

SECTION 3: LEVELS 3.1-3.7

Objectives: Students learn how to use the repeat loop. They also know that the repeat command must

be followed by a number, the body of the loop is indented, and the loop can repeat one or more

commands.

Vocabulary:

 Programming terms: repeat, loop, nested loop, body, syntax, syntax error

Command words: get, go, left, put, repeat, right

Repeat is written on its own line as repeat x, where x = the number of times the command is

to be repeated.

Body: the body contains the commands to be repeated. The commands are written on the lines

following the Repeat command, indented two spaces.

Loop: A set of commands repeated a given number of times.

Nested loop: A loop that is within another loop.

 This is a good time to introduce some of the terms used in programming. Refer to the online

 textbook under Section 5 Programming for details.

Algorithm: a series of logical steps that leads to the solution of a task. Students may be familiar

with algorithms used in operations such as subtraction and long division.

Logical error: a mistake in an algorithm. Planning helps reduce the number of errors.

Computer Program: An algorithm written using a programming language.

Syntax: the way a command line is written.

Syntax error: a mistake in spelling, operators, indentations, spaces

 Tier I words used in programming: home, max, collect, object, step

Simple words have specific meaning in the context of programming and may need explanation

Time required:

Time required will vary based on student ability and experience. Most students will complete this

section in two hours.

Prerequisite skills:

Completion of Section 2.

Background knowledge/Introductory Set/Purpose:

Explain the concepts of repeat loops. Remembering that go means “Move forward one step”, how

many lines of commands would it take to move Karel forward 10 steps? (10 lines) Instead of writing the

45

command “Go” once on ten separate lines, we can use a repeat command and then type the Go

command only once.

Warm up activity: practice walking out a set of commands such as:

 Go 5 steps.

 Turn left.

 Go 2 steps.

 Pick up the book.

 Turn around.

 Go 10 steps.

 Put the book on the shelf.

Students could write out short routines for each other that include repeated steps. This could be

expanded into a mini-treasure hunt (for example, by repeating the steps exactly, they find a wrapped

candy).

In real life, we might want our computer or robot to do something over and over again. This is why we

write loops in programming. A loop (or cycle) just repeats a command a certain number of times.

Big Idea: What are examples of repeated loops in real life (human, computer, robot or otherwise)?

Review vocabulary.

Direct Instruction and Modeling:

Show video on the third screen of 3.1 or by following this link:

 http://youtu.be/GwFT25bHWlg

(7 minutes, 53 seconds). The video explains how to build a repeat loop.

Level 3.1 can also be modeled to the class. It is a step-through demonstration level.

At this stage, programming requires some thought and planning. Emphasize the importance of studying

the tasks and the layout before starting to type. What tasks are cyclic and can be written as loops? How

many times are these loops repeated? Which way is the robot facing at the beginning and end of each

loop?

The repeat number has been included in the required command words as a hint for the number of times

an action should be repeated.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 3.1-3.7

http://youtu.be/GwFT25bHWlg

46

3.1 Two instructional screens, followed by a step-through demonstration video.

Karel moves 10 steps to go home.

Lines: 2

Commands: go

3.2 Karel moves x steps to go

home.

Lines: 2

Commands: go

Students fill in the number of steps on

the first line of the repeat loop.

3.3 Karel moves x steps to go

home.

Lines: 2

Commands: go

Students write the complete repeat

loop.

47

3.4 Step-through demonstration

level

Karel repeats three sets of

commands, picking up books, setting

them on the marks, and moving

forward.

Lines: 7

Commands: go, get, put

3.5 Repair the program

Karel is doing the same set of tasks as

in 3.4, but there is an error in the

program.

Lines: 7

Commands: go, get, put

Students run the program first, then

insert lines to correct the error.

3.6 Karel does a similar routine,

but places the books on the center of

the tables.

Lines: 10

Commands: go, get, put

Students write the complete repeat

loop.

48

3.7 Karel does a similar routine, collecting and placing books.

Lines: 10

Commands: go, get, put

Students write the complete loop.

Upon successful completion of 3.7, students will see this

message, summarizing the skills and concepts learned in

Section 2. On the following screen, they will receive

their next certificate. Section 4 will now be unlocked.

Questions for post-session discussion:

What are the benefits of writing loops into programs? What are some of the pitfalls?

What real life repeated tasks could a robot or computer do with these commands?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. Students will receive a printable “Yellow Belt of Second Degree” certificate upon completion

of Section 3. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 15 lines. Inform students where

they will share their game.

49

END OF SECTION 3: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and containers.(10 points)

● The game must include patterns that would be best solved by using a repeat loop.

Programming must include the commands get, go, left, put, repeat and

right. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

50

SECTION 4: LEVELS 4.1-4.7

Objectives: Students learn how to figure out the body of a loop with certainty, write commands before

and after a loop. They also know that to put commands after a loop, their indentation must be

canceled.

Vocabulary:

 Programming terms: repeat

Command words: go, left, right, get, put, repeat

Key words:

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 1 hour.

Prerequisite skills:

Completion of Section 3.

Background knowledge/Introductory Set:

Section 4 builds understanding of the repeat loop that was introduced in Section 3. Students should pay

attention to indentations that indicate which lines belong in the body of the repeat loop.

Repeated patterns are usually part of a bigger program. An example might be getting the ingredients

together to make bread. You prepare the water, yeast, salt and sugar. Then you measure out 4 cups of

flour, one cup at a time. Finally, you mix the ingredients together. The repeat loop of measuring the

flour is embedded in the larger procedure of making bread.

Big Idea: Think of other examples that include a repeated set of steps (exercise routines, practicing a set

of math problems, planting a row of seeds, clipping a fence to a post in three places, driving several

miles between an on-ramp and an exit on the highway, etc.). How could a computer or robot be

involved in these routines? What kind of program would it take?

Direct Instruction and Modeling:

Section 4 is a continuation of Section 3, and does not require much prior instruction. The first screen of

4.1 can be discussed as a check on understanding of the beginning and end of a repeated pattern.

Special attention should be paid to Karel’s orientation. Is he facing the same way at the beginning of

each loop?

Review the syntax: the body of the repeat loop must be indented 2 spaces.

The step-through demonstration levels are 4.3 (writing steps preceding the loop) and 4.5 (writing steps

following the loop).

Challenge students to come up with 15, 16 or 17 line solutions to 4.7, even though it can be passed with

a longer program.

51

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 4.1-4.7 (All previous commands may be needed but not necessarily

listed under each lesson. Defined objects are listed)

4.1 Karel collects all the coins and places them in containers, ending at the home square.

Commands and keywords: 4, get, go,

left, put, repeat, right

Lines: 15

Students practice writing loops that

include turns.

4.2 Karel collects all the coins and places them in containers, ending at the home square.

Commands and keywords: 4, get,

go, left, put, repeat,

right

Lines: 15

Students practice writing loops that

include turns, this time without clues.

52

4.3 Demonstration Level: Karel collects all the coins and places them in the containers, ending at

home.

This demonstration shows a repeat

loop preceded by a set of commands

outside of the loop.

4.4 Karel collects all coins and places them in the containers, ending at home.

Commands: 9, get, go, put,

repeat, right.

Lines: 20

Students practice writing a loop

preceded by a set of commands,

similar to 4.3.

4.5 Demonstration level: Karel collects all the coins and places them in the containers, ending at

home.

This demonstration shows a repeat

loop followed by a set of commands

outside of the loop.

53

4.6 Karel collects all the coins and places them in containers, ending at home.

Commands and keywords: 4, get,

left, put, repeat, right

Students practice writing a loop

followed by commands outside of the

loop, similar to 4.5.

4.7 Karel collects all the coins and places them in containers, ending at home.

Commands and keywords: 10,

get, go, left, repeat,

right

Lines: 30

Student practice writing a loop that is

both preceded and followed by

commands outside the loop.

NOTE: This level challenges students

to solve the puzzle in fewer lines (17,

16, or 15 lines). In order to do this, they will need to look for other patterns that can be written as

loops.

Upon successful completion of 4.7, students will see this

message, summarizing the skills and concepts learned in

Section 4. Section 5 will now be unlocked.

Possible questions for post-session discussion:

In 4.7, there were several possible solutions. Compare your solutions.

What indentation rules did you learn regarding repeat loops and commands that precede or follow the

loops?

Assessment: Assessment is built into the program. Students must complete a level successfully in order

to unlock the next level. Students will receive a printable “Yellow Belt of Third Degree” certificate upon

completion of Section 4. See Assessment section for journal and project ideas.

Suggested Game Assessment: Number of programming lines will vary. A suggestion is between 6 and

20 lines. Inform students where they will share their game.

54

END OF SECTION 4: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and containers that includes repeated sections. (10

points)

● Programming must include the commands get, go, left, put, repeat and

right. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

55

SECTION 5: LEVELS 5.1-5.7

Objectives: Students learn how to write programs that have multiple loops, and how to use nested

loops. They also know that indentation increases when loops are nested.

Vocabulary:

 Programming terms: repeat

 Command words: all previous words

 Sensor words: pearl (Karel has an extensive library of sensors)

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 1 hour.

Prerequisite skills: Completion of Section 4.

Background knowledge/Introductory Set:

Karel uses the repeat loop to repeat operations a certain number of times. These operations are often

made up of other repeated operations. We call these nested loops. Think of how you may have

modeled multiplication and division: equal groups or equal shares, arrays, areas, repeated addition and

subtraction. Look for these patterns in Karel’s tasks.

A gardener plants 5 rows of tomato plants (main loop) with 4 plants in each row (nested loop).

A robot fastens screws in 4 places along the edge of a piece of sheet metal. Each screw is turned 6

times.

Big Idea: Repeated patterns or sequences often contain smaller repeated sequences within them.

Direct Instruction and Modeling:

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

56

Self-paced Instruction: Levels 5.1-5.7

5.1 Step-through demonstration level: Multiple loops.

Karel collect 5 pearls, ending at home.

This level demonstrates the use of

two repeat loops: one to go to the

location of the pearls, and the other

to collect the pearls.

5.2 Karel collects one row and one column of pearls (7 in all), ending at home.

Lines: 15

Commands and keywords: 3, 4,

get, go, left, repeat.

Students create 2 loops: one for the

row, and the other for the column.

5.3 Karel places the 10 pearls that are in his pocket, ending at home.

Lines: 15

Commands and keywords: go, put,

repeat, right

Students create two repeat loops,

similar to 5.2.

57

5.4 Karel picks up 5 pearls and places them in the fishing nets, ending at home.

Lines: 20

Commands and keywords: get, go,

left, put, repeat, right

Students create two repeat loops,

preceded by a set of commands.

5.5 Step-through demonstration level: Nested loops

The pearls are in 3 groups of 4. The

inside loop collects the 4 pearls; the

outside loop repeats this procedure 3

times.

5.6 Karel picks up 3 lines of 4 pearls each, ending at home.

Lines: 10

Commands and keywords: 3, 4,

put, go, left, repeat,

right

Students create an inner loop to

collect the pearls, and an outer loop

to do this 3 times.

The indentation increase by 2 for

each loop.

58

5.7 Karel collects 24 pearls in a square pattern, ending at home.

Lines: 15

Commands and keywords: 4, 6,

get, go, left, repeat,

right

Upon successful completion of 5.7, students will see this

message, summarizing the skills and concepts learned in

Section 5. On the following screen, they will receive their next

certificate. Karel 2 (Unit 2 of the Karel Jr Course) is now

unlocked.

Questions for post-session discussion:

What numerical operations are similar to these nested loops? (multiplication/division)

What indentation rules must be followed with nested loops?

Think of some real-life scenarios that operate like nested loops. (Any repeated sets of operations, such

as planting several rows with the same number of plants in each row.)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. Students will receive a printable “Yellow Belt of Fourth Degree” certificate upon completion

of Section 5. See Assessment section for journal and project ideas.

After completing Karel 1, students will be ready to start Karel 2 and learn more advanced programming

skills.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 20 lines. Inform students where

they will share their game.

The maze must include nested loops, similar to those in the instructional levels (groups of objects in

clusters, rows of objects, etc).

59

END OF SECTION 5: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and containers that includes repeated groups of

items. (10 points)

● Programming must include the commands get, go, left, put, repeat and

right, and included nested repeat loops. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

60

KAREL JR UNIT 2

Karel 2 Overview: In real life, tasks are do not always follow the same path. We make decisions based on what

we observe, and act accordingly. Machines need that same capability. We equip them with the ability to detect

certain parameters and decide how to act. In Karel 2, students learn how to write conditional loops, using

“if/else”, “while”, logical operators “and”, “or”, not”, and various sensors.

SECTION 6: Students learn how to use if-conditions to check for collectible objects, to check for obstacles, and how

to use if-conditions inside of loops. They also know that the body of conditions is indented the same as the body

of loops. Karel can only detect collectible objects which are in his square, and obstacles which are in the adjacent

square.

SECTION 7: Students learn how to use the else-branch with if-conditions, and how to use Karel's north sensor.

They also know that the body of the else-branch is indented, the north sensor can be used to make Karel point

North, and the north sensor can be used to make Karel point East, West or South as well. Conditions may contain

other conditions or loops, and loops may contain other loops or conditions.

SECTION 8: Students learn how to use the empty sensor to check if Karel's pocket is empty, use keyword not to

reverses the outcome of conditions, use keyword and to make sure that two or more conditions are satisfied at the

same time, and use keyword or to ensure that at least one of multiple conditions is satisfied. They also know that

it is a good idea to use parentheses in more complex logical expressions.

SECTION 9: Students learn how to use the while loop. They also know that the while loop is used when the

number of repetitions is not known in advance. With while loops you can use the same sensors as with if-

conditions. The body of while loops is indented same as the body of repeat loops.

SECTION 10: Students learn how to navigate a maze where the path goes either forward, to the left, or to the right.

They continue practicing the while loop and combine it with other loops and conditions.

61

SECTION 6: LEVELS 6.1-6.7

Objectives: Students learn how to use if-conditions to check for collectible objects, to check for

obstacles, and how to use if-conditions inside of loops. They also know that the body of conditions is

indented the same as the body of loops. Karel can only detect collectible objects which are in his

square, and obstacles which are in the adjacent square.

Vocabulary:

 Programming terms: if, condition

Command words: all previous words

Key words: if

Sensor words: items from the Karel library, which can include collectible items (such as

 orchid), containers (such as basket), and obstacles (such as wall, plant). A word that

 is both in the library and correctly spelled will be blue-colored. Collectible and container items

 are sensed in the square that Karel occupies. Obstacles are sensed in the square in front of

 Karel.

 If is written on its own line as If x, where x = a defined condition. In these lessons, predefined

 objects from the library are used as sensor words for the condition.

Just like the repeat loop, the body contains the commands to be followed if the “If” condition is

 met. The commands are written on the lines following the If command, indented two spaces.

Condition (Section 8 in the textbook): tells the program what to look for and how to act.

 Conditions make decisions while the program is running and handle unexpected situations. The

 program may need to collect all the coins it finds, but may not know where the coins will be

 located. The if condition says: “Is there a coin? If there is a coin, get it.” Conditions work like a

 switch.

 Satisfy: in programming, satisfy means to meet the condition - the condition exists.

 Aisle: a row or column with objects on either side

 Sensor: the presence of something, such as a coin, used to create a condition.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 1 hour of programming time.

Prerequisite skills:

Completion of Karel 1.

Background knowledge/Introductory Set/Purpose: Explain the concepts of conditions. We want the

robot to assess his situation. What task does he need to do? What objects does he need to avoid? How

can we control where he goes no matter what the maze looks like? Does he have a choice of what to

do?

62

In real life, we might want our computer or robot to look for conditions and act in a certain way under

those conditions. This is why we write if and else conditions.

If sets the condition and the following line tells the robot what to do.

How to write conditions: show video (follow link on first screen of 6.1 or here:

http://youtu.be/Mk8JDkaZhsA

The video explains how to build a condition loop.

Big Idea: What are examples of conditions in real life (human, computer, robot or otherwise)?

Direct Instruction and Modeling:

The video and step-through demonstration in Level 6.1 model how to write conditions. 6.3 can be used

to model the procedure as well.

Point out that Karel might be running more than one maze. Click on the colored tabs on the upper right

corner of the maze to view the different versions. This is a good way to test whether or not the program

will work under different conditions. Multiple mazes are noted and practiced in 6.2.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

http://youtu.be/Mk8JDkaZhsA

63

Levels 6.1-6.7: Self-paced instruction

6.1 Level 6.1 begins with an instructional video on building condition loops.

The video is followed by two screens explaining the value of writing conditions. In this case, Karel does

not know how many orchids are there in advance, but he can test to see if an orchid is in the square and

then pick it up. The condition is indented the same way as a loop. This condition starts with “if”.

Step-through demonstration: Conditions. Karel collects all the orchids he can find.

This level demonstrates the use of a

condition (if orchid/get), within a

repeat loop (repeat 10/go).

Students should note how the

program pauses at “get” when an

orchid is detected.

64

6.2 Karel moves through the jungle, checking to see if there are orchids, and collecting them when

he does.

A condition can be tested on several

mazes to see if it works for all of

them. The colored tabs open up

different versions of the maze.

Students can run the program in each

of them to see if it works in all cases

(refresh the screen to run the

program again, press on a different

tab, then press the green play

button).

6.3 Karel moves through the jungle, checking to see if there are orchids, and collecting them when

he does.

Lines: 8

Commands and keywords: 9, get,

go, if, orchid, repeat

Students write the repeat loop and

the condition using the commands

and keywords.

Orchid is a sensor word. Sensor

words are blue in color if they exist in

the library and if they are spelled correctly.

6.4 Karel moves through the jungle, checking to see if there are orchids, and collecting them when

he does.

Lines: 10

Commands and keywords: 7, get,

go, if, left, orchid,

repeat, right

Students write the repeat loop and

the condition using the commands

and keywords. This time, the path is

diagonal and requires left and right

commands. . Notice the introduction

of a wall. Objects to be avoided will

become another set of condition for Karel to observe in the next levels.

65

6.5 Step-through demonstration level. Karel moves through the jungle, checking to see if there are

dangerous, carnivorous plants to be avoided.

Note that Karel is checking the square

ahead of him, rather than the one he

is in. He must move around the

obstacle.

When stepping through, watch how

the program skips over the whole

body of the condition if the condition

is not met.

6.6 Karel moves through the jungle, checking to see if there are dangerous, carnivorous plants to be

avoided. He can only move to the left because of obstacles to the right of the path.

Lines: 15

Commands and keywords: 8, go,

if, left, plant, repeat,

right

Students build a program similar to

6.5, except that this time, Karel can

only move to his left to avoid the

plant.

6.7 Karel moves throught the jungle, collecting spiders that he will need to feed the scorpions.

Lines: 15

Commands and keywords: 10, go,

if, left, spider, get,

repeat, right

Students build a program similar to

6.5, except that this time, Karel is

collecting spiders.

66

Upon successful completion of 6.7, students will see

this message, summarizing the skills and concepts

learned in Section 6. Section 7 is now unlocked.

Possible questions for post-session discussion:

What are the benefits of writing conditions into your program?

Give a couple of examples of how conditions were used in this section. (to collect orchids, to avoid

carnivorous plants when the location of either one was not known in advance)

How could you use conditions in the real world?

What indentation rules did you learn regarding conditions? (The body of a condition is indented the

same way as a repeat loop.)

For a sensor word to be blue-colored it must ________________ (exist in the library for Karel) and

_________________ (be spelled correctly).

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 20 lines. Inform students where

they will share their game.

67

END OF SECTION 6: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and obstacles. (10 points)

● Programming should include the commands and keywords get, go, left, repeat

and right as needed. Programming must include conditions using If, and sensor words.

Use sensor words to match the objects which you have selected for your maze. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

68

SECTION 7: LEVELS 7.1-7.7

Objectives: Students learn how to use the else-branch with if-conditions, and how to use Karel's north

sensor. They also know that the body of the else-branch is indented, the north sensor can be used to

make Karel point North, and the north sensor can be used to make Karel point East, West or South as

well. Conditions may contain other conditions or loops, and loops may contain other loops or

conditions.

Vocabulary:

 Programming terms: if, condition

Command words: all previous words

Key words: not

Sensor words: north, wall, mark, spider

 If is written on its own line as If x, where x = a defined condition. In these lessons, predefined

objects such as “coin” are used as sensor words for the condition.

Just like the repeat loop, the body contains the commands to be followed if the “If” condition is

met. The commands are written on the lines following the If command, indented two spaces.

Condition (Section 8 in the textbook): tells the program what to look for and how to act.

Conditions make decisions while the program is running and handle unexpected situations. The program

may need to collect all the coins it finds, but may not know where the coins will be located. The if

condition says: “Is there a coin? If there is a coin, get it.” Conditions work like a switch.

Not is a logical operators for the condition. In order to execute the command,

Not means that condition must not be met.

Else provides an alternate set of commands if the condition is not satisfied.

 Satisfy: in programming, satisfy means to meet the condition - the condition exists.

 Aisle: a row or column with objects on either side

 Sensor: the presence of something, such as a coin, used to create a condition.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours.

Prerequisite skills:

Completion of Section 6.

69

Background knowledge/Introductory Set:

We have already learned how to create a set of if conditions, so that Karel can do his tasks in variety of

settings. We used the if condition to form a decision. If there was a spider, Karel picked it up. If there

was a wall, Karel went around it. But what if we want Karel to make two choices: do one set of

commands if the condition is met, and another set of commands if the condition is not met?

In real life applications, we make such branching decisions.

 If I am sick, I will stay at home.

 Otherwise (else), I will go to school.

 If I get 4 out of 5 answers wrong on a test, it will start asking easier questions.

 Else, it will continue with questions at the same level.

We use the keyword else to indicate the second choice, the one that is made if the condition is not met.

We can also use logical operators to refine our condition. In Section 7, the logical operator not is used.

Not indicates the absence of a condition.

 If I am not home, please leave the parcel in the box by the garage.

 If you do not have checked baggage, please proceed to the exit.

Big Idea: What are some other examples of if/else and if not conditions in real life (human, computer,

robot or otherwise)?

Direct Instruction and Modeling:

The program models the else condition as a step-through demonstration in Level 7.3.

The north sensor is modeled in Level 7.6.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

70

Self-paced instruction: Levels 7.1-7.7

7.1 Karel must place the spiders he collected for the scorpions on a row of random marks.

Line: 10

Commands and keywords: 14, go,

if, mark, put, repeat

Students write a repeat loop for the

number of steps. The repeat loop

contains a condition to put the

spiders on the marks. Note that

“spiders” are not named in the

program. It merely takes the items

out of Karel’s pocket. The pocket

counter is located on the upper left corner of the maze.

7.2 Karel must place the spiders on “random” marks throughout the maze.

Lines: 10

Commands and keywords: 83, go,

if, mark, put, repeat,

right

How do we search the entire maze?

Karel turns right every time he puts a

spider on the mark. This keeps him

moving in a rectangular pattern until

he is done. The instructions call for

the loop to be repeated 83 times.

The marks are not truly random: they are strategically placed so that the right turn solves the puzzle.

7.3 Step-through demonstration of the else branch. Karel checks for walls and goes around them.

The if condition has Karel go around

the wall if he detects one. The else

branch tells him to go forward if he

does not detect a wall.

71

7.4 Karel places a spider on every mark and goes around every wall.

Lines: 15

Commands and keywords: 14,

else, go, if, left, mark,

put, repeat, right

Students insert the lines needed to

place the spiders on the marks, and

adjust the number of repetitions.

7.5 Karel places a spider on every mark and goes around every wall.

Lines: 20

Commands and keywords: 11,

else, go, if, left, mark,

put, repeat, right

Students are prompted to start the

condition with “ if mark “. The else

portion is triggered when there is no

mark in front of Karel. Else will be a

set of commands that turns Karel left,

places the spider on the mark and return to his position on the main path, facing forward for the next

step.

7.6 Students learn about the directional sensor north. “If not

north” can be used to detect if Karel is facing North (the top of the

maze). The condition “ if not north” tests to see if Karel is facing

any other direction (East, South, or West). Notice that the “not”

operator is used.

Step-through demonstration: Karel’s

home is only 10 steps away, but he

does not know which direction he is

facing.

The program uses the “if not

north”condition to re-orient Karel and

send him home. He would need to

make three right turns at most to face

north.

72

7.7 Karel orients himself facing north, then turns and follows a path home, placing spiders on marks

as he goes.

Lines: 10

Commands and keywords: 10, go, if,

left, mark, north, not, put, repeat

Students complete the program by

orienting Karel on the path, adding

lines to place the spiders and

adjusting the number of repetitions.

The “if north” portion is already

written.

Upon successful completion of 7.7, students will see this

message, summarizing the skills and concepts learned in Section

7. Section 6 is now unlocked.

Possible questions for post-session discussion:

When do you need an “else” branch? (when the absence of the condition requires its own set of

commands)

What does the operator “not” mean? (the absence of the condition)

How does the north sensor help orient Karel? (Once Karel faces north, he can be oriented in a new

direction with certainty) Why do you have to repeat the “if not” condition 3 times? (He needs to turn

left once if he is facing east, 2 times if he is facing south, and 3 times if he is facing west)

How could you use conditions in the real world?

What indentation rules did you learn regarding conditions? (The body of a condition is indented the

same way as a repeat loop.)

For a sensor word to be blue-colored it must ________________ (exist in the library for Karel) and

_________________ (be spelled correctly).

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 20 lines. Inform students where

they will share their game.

73

END OF SECTION 7: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and obstacles. (10 points)

● Programming should include the commands and keywords Get, Go, Left, Put, Repeat and

Right as needed. (6 points)

● Programming must include conditions using If, else, and not and sensor words. Use sensor

words to match the objects which you have selected for your maze. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

74

SECTION 8: LEVELS 8.1- 8.7

Objectives: Students learn how to use the empty sensor to check if Karel's pocket is empty, use keyword

not to reverses the outcome of conditions, use keyword and to make sure that two or more conditions

are satisfied at the same time, and use keyword or to ensure that at least one of multiple conditions is

satisfied. They also know that it is a good idea to use parentheses in more complex logical expressions.

Vocabulary: (new words: empty, or, and)

 Programming terms: if, condition

Command words: all previous words

Key words: or, and, not

Sensor words: empty, wall, coin, nugget, cart, snake

 Or, and, not are logical operators for the condition. In order to execute the command,

Or means that one (or a set of conditions within parentheses) of two or more conditions

 must be met,

And means both or all of the conditions must be met,

Not means that condition must not be met.

Empty tells whether or not the robot has an object in its pocket. This creates a condition, either

if empty, or if not empty

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours.

Prerequisite skills:

Completion of Section 7. The level of difficulty in both concept and skill is increasing and you may find a

divergence in rate of success among your students, especially in the younger grades.

Background knowledge/Introductory Set:

Karel knows how to check for conditions one at a time. Now, we can create more complex conditions

for his decisions. Think of how you choose your lunch from a menu:

 You will have soup or salad.

 If you have salad, you will have no dressing or house dressing.

 You will have spaghetti, which is composed of noodles and meatballs and sauce.

 If you are full (not empty), you will not have dessert.

In this section, we learn the logical operators and, or and not. These help Karel make more complex

decisions. We will also keep track of the number of objects in his pocket by using empty or not empty.

75

Direct Instruction and Modeling:

Step through demonstrations are located in Level 8.3 (empty, not empty), and 8.5 (and, or, use of

parentheses). These demonstrations can be discussed as a class.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Levels 8.1-8.7: Self-paced instruction

8.1 Karel must place 4 gold nuggets in carts in the tunnel.

Line: 15 (Challenge students to write

the program in 8 or 10 lines. The 8-

line program requires a nested repeat

loop)..

Commands and keywords: 7, cart, go,

if, left, put, repeat, right

Students write a repeat loop that

contains “if cart”.

8.2 Karel must collect the nuggets and place them in the carts in the mine tunnel.

Lines: 20

Commands and keywords: 7, cart,

get, go, if, left, nugget, put, repeat,

right

Students modify the program in 8.1 to

adjust the direction, and include

retrieving the nuggets before placing

them in carts.

8.3 Step-through demonstration of the empty sensor.

Karel checks for nuggets in his pocket.

76

In the demonstration, Karel checks his

pocket for nuggets. If he has one, he

will put it on the square and move

forward. If he doesn’t have one, he

will stop. When he stops, the

program ends. Until now, the

program has ended when Karel

reaches the home square.

8.4 Karel needs to collect nuggets, put 2 on the carts and bring 1 home.

Lines: 10

Commands and keywords: 14, cart,

empty, get, go, if, not, nugget, put,

repeat

Students need to repair the program

that is already written, by adding an if

not empty condition.

8.5 Step-through demonstration on combining logical operations on one line.

The demonstration uses the program

from 8.4, combining the if not empty

and the if cart lines into one line. The

parentheses are used to clarify that

not applies only to empty

If cart and (not empty)

77

8.6 Step-through demonstration on the logical operator (keyword) or.

Karel must collect nuggets and jewels.

Or ensures that at least one out of the

two or more conditions are met in

order for Karel to pick up the object.

In this case, if Karel finds a nugget or a

jewel, he will collect it. He will not

collect the other objects because they

are not specified.

8.7 Karel must get through the maze to the home square, picking up nuggets and coins and avoiding

traps. If he encounters a wall, he goes to the right. However, if there is a snake, he must turn left.

Lines: 15

Commands and keywords: 18, get, go,

if, left, or, repeat, right, snake

Students complete the program by

orienting Karel on the path, adding

lines to place the spiders and

adjusting the number of repetitions.

The “if north” portion is already

written.

Upon successful completion of 8.7, students will

receive the Yellow Belt of Third Degree and see this

message, summarizing the skills and concepts learned

in Section 8. Section 9 is now unlocked.

Possible questions for post-session discussion:

Explain when you use the operator or and when you use and. (Or is used when one of the conditions

needs to be satisfied. And is used when both (or all) of the conditions must be satisfied.)

When would you use parentheses? (When you want the operator to apply to specific keywords)

Think of real world situations that require and/or conditions.

78

Think of real world situations that require empty or not empty conditions.

Assessment: Assessment is built into the program. Students must complete a level successfully in order

to unlock the next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 20 lines. Inform students where

they will share their game.

79

END OF SECTION 8: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and obstacles. (10 points)

● Programming should include the commands and keywords Get, Go, If, Left, Repeat and Right

as needed.

● Programming must include conditions using If, operators and, or, not, and sensors, including

empty. Use sensor words to match the objects which you have selected for your maze. (6

points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (10 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

80

SECTION 9: LEVELS 9.1-9.7

Objectives: Students learn how to use the while loop. They also know that the while loop is used when

the number of repetitions is not known in advance. With while loops you can use the same sensors as

with if-conditions. The body of while loops is indented same as the body of repeat loops.

Vocabulary:

While: A while loop is a repeated set of commands that will continue as long as the condition being

sensed is present. The number of repetitions is not known in advance. The while loop continues until

the condition is no longer sensed. While loops use the same sensors as if conditions. They differ

because they continue the loop until the condition is no longer sensed, whereas the if condition senses

each square as a separate test.

Infinite loop: If a loop never senses when to end (the stopping condition), it can continue infinitely.

Fortunately, most programs will time out if this happens. In Karel, programs can always be stopped

manually if this happens.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours.

Prerequisite skills:

Completion of Section 8.

Background knowledge/Introductory Set:

If conditions test for the presence of a sensor. Else can provide an alternative action if the sensor is not

there. Karel tests every square as long as the if condition is in play. However, what if we don’t know

where the sensors are, and we want Karel to keep checking for them while he is doing other tasks? The

while loop is used for this purpose. For example, Karel could keep looking for an item as long as he

hasn’t reached the home square. We would start such a loop with while not home. On the other hand,

Karel might have to repeat a function several times until he no longer senses a condition. For example,

a while wall loop would continue until Karel no longer senses a wall.

In this section, we learn how to write while conditional loops. We are still using if conditions. Examine

these carefully to understand the difference.

Direct Instruction and Modeling:

There are several instructional screens in 9.1 that describe the purpose and usefulness of the while

command. The teacher can go through these screens with the class prior to individual instruction, and

model how to type the while loop in the Level 9.1 lesson. The video in 9.1 describes and demonstrates

while loops.

http://youtu.be/9YpKSfwJCTs

http://youtu.be/9YpKSfwJCTs

81

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion. At this stage, programming requires some thought and planning. Students now have all the

basic tools: when are the repeat loops, if conditions, and while loops best used? Emphasize the

importance of studying the tasks and the layout before starting to type. Even small syntax errors can

cause failure. Why did a program work or not work?

Levels 9.1-9.7: Self-paced instruction

Level 9.1 begins with a YouTube video that teaches

While Loops, located at

http://youtu.be/9YpKSfwJCTs

The step-through demonstration

shows how the while loop works.

Karel will continue to collect barrels

while there are barrels. When there

are no more barrels, he will stop.

http://youtu.be/9YpKSfwJCTs

82

9.2 Karel must place an unknown number of barrels in a row (the unknown is the number in his

pocket).

Lines: 10

Commands and keywords: empty,

go, not, put, while

Students write a program using the

while loop. While not empty means

that Karel will continue to perform

the task until his pocket is empty.

Then he will stop.

9.3 Karel collects barrels until he reaches home.

Lines: 10

Commands and keywords: barrel, get,

go, home, if, not, while

On this level, the “while not home”

condition is introduced. This

condition allows Karel to continue

performing a task until he reaches the

home square. This way, the number

of steps does not need to be

specified.

9.4 Karel collects barrels but must avoid the puddles of acid.

Lines: 20

Commands and keywords: acid,

barrel, get, go, home, if, left, not,

right, while

Students write a program that

incorporates “while not home”,

creates an if condition for collecting

the barrels and an if/else condition

for avoiding the acid (if results in

moving around the acid, else results

in moving forward).

83

9.5 Karel needs to check a strip of acid for an opening to go through.

Lines: 10

Commands and keywords: acid, go,

left, right, while

Karel tests the strip of acid by turning

to face it after ever step, and using

the “while” command to check for

acid. The first time that there is no

acid, he can safely go through. This is

an example of using “while” instead

of “if/else”: we don’t know when

Karel will find the opening, but when he does, the condition will stop. Until then, the presence of acid is

consistent.

9.6 Karel again looks for an opening in a strip of acid, and he must collect an unknown number of

barrels.

Lines: 15

Commands and keywords: barrel,

acid, get, go, home, if, left, not, right,

while

Students write two while loops: one

for testing the strip of acid for an

opening, as in 9.5 (“while acid”), and

one for setting the stopping condition

of reaching home (“while not home”).

The “if” condition is used to check for

barrels, since it must check every square as a separate test.

9.7 Karel finds a safe passage home by testing for fire.

Lines: 10

Commands and keywords: fire, go,

home, if, not, right, while

This program is very simple. Because

the path is a spiral, Karel only needs

to turn right to avoid the fire. “While

not home” sets the stopping

condition.

84

Upon successful completion of 9.7, students will see

this message, summarizing the skills and concepts

learned in Section 9. Section 10 is now unlocked.

Possible questions for post-session discussion:

Compare while and if loops. How are they similar? (They use the same sensors. They both test a

condition or conditions. If the condition(s) is met, then the commands in the body of the loop are

executed)

How are they different? (A while loop keeps going until the condition is not met. An if condition tests

each step individually. It can branch to another command using else)

Assessment: Assessment is built into the program. Students must complete a level successfully in order

to unlock the next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. A suggestion is between 6 and 20 lines. Inform students where

they will share their game.

85

END OF SECTION 9: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create a maze with a theme, walls, objects and containers. (10 points)

● Programming should include several basic commands get, go, left, put, repeat
and right.

● Programming must include conditional loops using while, home, and, not, or. It
may include empty. (6 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game by running the program. Edit as needed. (20 points)

● Publish the game to your folder. Inform someone else about the game by providing the link
on ____________________________________(5 points)

86

SECTION 10: LEVELS 10.1-10.7

Objectives: Students learn how to navigate a maze where the path goes either forward, to the left, or to

the right. They continue practicing the while loop and combine it with other loops and conditions.

Vocabulary:

No new vocabulary in this Section

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours.

Prerequisite skills:

Completion of Section 9.

Background knowledge/Introductory Set:

We have learned how to create different kinds of loops, including repeat (counting) loops, and loops

based on if/else conditions and while conditions. We use logical operators and, or, not to customize the

sensors.

In past sections, the mazes have followed predictable patterns. In this section, we will start by

practicing loop combinations that are useful for spirals, squares, and steps. Then we will learn how to

navigate more complex mazes.

Direct Instruction and Modeling:

The first five levels practice while loops, if conditions and repeat loops in different combinations to solve

spiral, square and step mazes. 10.6 is a step-through level that shows how to make choices on which

way to turn to avoid running into a wall. This level can be demonstrated and discussed as a class as

needed, or reviewed as a follow-up discussion after students complete Section 10.

Note: this is the final level for Karel 2. For the final project, students can create multiple mazes to test

their program.

To do this, use the “Add a Copy” tool on the Maze menu to create additional mazes. To save time and

also to take advantage of the versatility of the While loop, the tool “Place Elements Randomly” can be

used to place objects.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

87

Levels 10.1-10.7: Self-paced instruction

10.1 Karel goes through a maze to reach the home square, collecting one key along the way.

Line: 10

Commands and keywords: get,

go, home, if, key, left,

not, wall, while

As in 9.7, Karel is following a spiral.

To avoid crashing into a wall, he turns

left if he detects a wall. Student

program a while loop that contains

two if conditions.

10.2 Next, Karel climbs a set of stairs, collecting two more keys.

Lines: 10

Commands and keywords: get,

go, if, key, left, right,

wall, while

Students practice writing a while loop

with embedded if conditions. Similar

to the program for the strip of acid in

9.5 and 9.6, the “while wall” loop will

continue the pattern of climbing until

there is no more wall (stopping

condition).

10.3 Karel

Lines: 10

Commands and keywords: get,

go, home, if, key, left,

not, while

Students write a “while not home”

loop that has Karel search each shelf

for a key. The number of shelves is

unknown.

Challenge: a 10-line program is OK, a

7-line program is awesome! (Students should look for repeated patterns to shorten the program)

88

10.4 Karel walks the perimeter wall and collects keys.

Lines: 10

Commands and keywords: 4, get,

go, if, key, left,

repeat, wall, while

10.4 is part one of 10.5. The while

loop is test for the presence of the

wall. Karel keeps moving as long as

there is no wall (while not wall). The

while condition is embedded in a

repeat 4 loop: one repetition for each

wall.

10.5 Karel completes the perimeter walk from 10.4, then finds his way to the center of the maze.

Lines: 20

Commands and keywords: 3, 4,

get, go, if, key, left,

repeat, right, wall,

while

The program starts with the code

from 10.4, which collects the keys

along the perimeter wall. Students

write the rest of the program, which

will get Karel home in the center of

the maze. Look for repeated patterns.

A simple repeat loop will work.

10.6 Step-through instructional level. Karel must check for walls more than once to know whether

he should proceed left or right.

The program demonstrates how to

write a nested set of two if

conditions.

First, Karel checks for a wall. If it is

there, he turns left. If he senses a

wall again, he needs to turn around

so that he faces the opposite

89

direction (right, right or left, left). This will prevent him from crashing into a corner.

This nested set of if conditions is very useful for navigating mazes in any direction, not just a set spiral or

step pattern.

10.7 Karel navigates a maze and collects all the keys in his path.

Lines: 15

Commands and keywords: get, go,

home, if, key, left, not, right, wall,

while

This maze looks complicated, but it

will respond to the same set of

commands as 10.6. This is a good

example of how a simple, elegant

program can work in a complex

setting.

Upon successful completion of 10.7, students will

receive the Yellow Belt of Fourth Degree and see this

message, summarizing the skills and concepts learned in

Section 10. Karel 3 is now unlocked.

Possible questions for post-session discussion:

Compare the different kinds of mazes (spiral, square, step, complex). What types of loops or conditions

were best for each one?

Review how to make multiple mazes in Creative Suite (see Direct Instruction).

Assessment: Assessment is built into the program. Students must complete a level successfully in order

to unlock the next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

Number of programming lines will vary. The game creation will take longer if students create multiple

mazes. Inform students where they will share their game.

90

END OF SECTION 10: CREATE A GAME FOR KAREL (100 POINTS)

Create and publish a game for Karel in Programming Mode.

● Create four complex mazes with a theme, walls, objects and containers. Use the “Add a
Copy” tool on the Maze menu to create additional mazes.
Using the “Place Elements Randomly tool may help. (40 points)

● Programming should include the commands get, go, left, put, repeat and

right as needed (6 points)

● Programming must include conditional loops using while, if/else, home, and,
not, or, north as needed. It may include empty. (10 points)

● The number of programming lines should be between __ and __ . (5 points)

● When editing the game, write the objectives of the game under the Summary tab. Include a

storyline that relates to your maze. (7 points)

● Set the goals under the Goals tab. (7 points).

● Test the game on all four mazes by writing the lines of code and running the program. Edit as
needed. (20 points)

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

91

KAREL JR UNIT 3

Karel 3 Overview: Whether human or robot, we often follow routines in our daily lives. Such a routine can be

defined once, then used whenever it is needed. In Karel, these are referred to as defined commands, which

combine a set of commands that can be called upon whenever needed in the main program. In programming, as

in real life, a defined command should be tested on a simple situation before using it in a more complex

program. We also use variables to count and report events or items. At this stage, we are also learning to

optimize programs, not just finding the simplest or shortest way to complete our tasks.

SECTION 11: Students learn how to define a custom command using the keyword def and call it in the main

program whenever it is needed. They know that the body of a new command must be indented.

SECTION 12: Students learn that a new command should always be tested on a simple task first, and then it can be

safely used as part of a larger program. They also learn advanced maze skills: how to follow a line that is on Karel’s

left, or one that is on Karel’s right.

SECTION 13: Students learn that the shortest program may not always be the best. A slightly longer program that

is much faster, is better than a slightly shorter program that takes a lot of time. Students know to break a complex

problem into smaller tasks which are solved first.

SECTION 14: Students learn how to create new variables and initialize them with numbers. They use the function

inc() to increase the value of a variable by one, the function dec() to decrease the value of a variable by one, and

the print command to display results. The print command can be used to display the values of variables while the

program is running.

SECTION 15: Students learn how to define new functions and return values using the keyword return, use

functions inc() and dec() to increase / decrease the value of a variable by more than one. They know that the value

returned from a function can be stored in a variable, and if the returned value is not used, it will be automatically

printed. Any code typed after the return command is dead. Variables defined inside commands and functions are

local, and local variables cannot be used outside of the command or function where they were defined. Variables

created in the main program are global, and global variables should not be used inside commands and functions.

92

SECTION 11: LEVELS 11.1-11.7

Objectives: Students learn how to define a custom command using the keyword def and call it in the

main program whenever it is needed. They know that the body of a new command must be indented.

A defined command has two advantages:

● The program requires less lines of code, once the definition has been created.

● It is easier to fix problems within the defined command, rather than searching through the

program and fixing several lines.

Note that the program makes use of comment lines to explain what is happening in each section. These

lines begin with #, which indicates a text string rather than a programming line. These comment lines

will assist students in writing the next step of code.

Vocabulary: Students should already be familiar with:

Command words: go, left, right, get, put

Repeat (counting) loops

If/Else Conditions and While Conditional loops

Logical Operators and, or, not

Keyword/ Sensor Words home, defined objects and obstacles

New Vocabulary:

 def def begins a defined command, which is a set of commands that will be called in the

 main program.

Text string: words included in the program that are descriptive and not part of a command.

 Text strings are enclosed in quotation marks and are separated from command words by a

 comma.

Comment lines: lines of text strings, always starting with the # sign that describe what is

 happening in the program. Quotation marks are not needed in this case. Students will already

 be familiar with comment lines viewed in previous Karel levels, but they may want to start

 writing them into their own programs at this point.

Time Required

The presentation to the class takes about 10 to 15 minutes. Since the course is self-paced, the amount

of time to complete this Section will vary from student to student. Most students will finish the Section

in about two hours.

93

Prerequisite Skills

The Karel 2 unit must be completed in order to unlock Karel 3.

Background knowledge/Introductory Set/Purpose:

In Karel 1 and 2, students learned to create code that can:

 Control forward and turn movement

 Control picking up and putting down objects

 Simplify repeated patterns into repeat loops

 Make Karel responsive to unknowns by writing conditional loops.

In Karel 3, students will learn new tools that will make their programs more manageable, flexible and

powerful. Section 11 starts by introducing defined commands.

Explain to students that they will be learning how to define a command in Karel using the

reserved word def. A defined command creates a mini-program that can take care of a whole routine

with one command.

For example, let’s say that a teacher wants her students to get ready for the next subject. She

could create a command “Ready”. Student would know that when they heard “Ready”, they would put

away their books and supplies, and get out a fresh pencil, textbook, and journal for the next subject.

In a computer program, code can get very lengthy. By defining commands for different

routines, the code becomes more manageable.

A defined command can be called when it is needed.

It can be edited separately without disrupting the flow of the main program.

It must be defined for each program. In other words, if you create a def command in one

program, it will not be recognized in another one. You would have to recreate the command in the

second program as well.

Look for repeated sets of commands that could be turned into defined commands.

Direct Instruction/Guided Practice

 You may choose to watch Levels 11.1 and 11.2 together as a class. Level 11.1 demonstrates an

example of “bad” programming, and Level 11.2 how to clean it up using defined commands. Level 11.3

begins with a video that teaches how to use defined commands. Here is the link for that video:

https://www.youtube.com/watch?v=Kj_LTtyFYZA

https://www.youtube.com/watch?v=Kj_LTtyFYZA

94

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion. At this stage, programming requires some thought and planning. Students now have all the

basic tools: when are the repeat, if conditions, and while loops best used? Emphasize the importance of

studying the tasks and the layout before starting to type. Even small syntax errors can cause failure.

Why did a program work or not work?

Levels 11.1-11.7: Self-paced instruction

11.1 Demonstration level. Karel is collecting several groups of computer chips (codes).

This program repeats the same set of

commands to search one group over

and over again. The program works,

but is difficult to manage because there

are 108 lines of code.

What parts of the program can be

grouped together to make a set of

commands?

11.2 Demonstration level. Karel completes the same task as 11.1. This time, we use def star to

create a set of commands to collect the chips, and call it within the main program.

Observe how the defined command

star is called in the program. This time,

the program is only 46 lines long.

Comment lines are also used to head

different sections of the program.

These are preceded by the # symbol, so

that the computer can ignore them.

95

11.3 This level starts with a YouTube video, which

explains how to create and use defined commands.

Here is the link to the YouTube video:

https://www.youtube.com/watch?v=Kj_LTtyFYZA

Karel collects chips in a star pattern.

Lines: 30

Commands and keywords: (previously

learned commands are assumed to be

available), def

Part of the program is already

written. Students complete the set of

commands defined by star, and call

it in the main program.

11.4 Karel collects 5 groups of chips, moving from group to group.

The previously defined command star is used to collect the chips. A new command scoot is defined

for the steps needed to move from group to group.

Lines: 40

Commands/keywords: def, scoot

Most of the program is already

written, including the star

command. Students write the

commands needed for scoot, and

call both star and scoot in the

main program.

https://www.youtube.com/watch?v=Kj_LTtyFYZA

96

11.5 Karel collects a box of water bottles.

Lines: 40

Commands/keywords: def,

waterbox

There is more than one way to write

the code for waterbox. Have

students compare their solutions. Did

they use repeat loops?

11.6 Karel collects several boxes of water bottles.

Lines: 50

Objects to collect: 27

Commands and keywords: def,

waterbox

Most of the program is already

written. Students call waterbox

and create the steps in between the

waterboxes within the main program.

11.7 Karel collects rows of individual water bottles.

The first three screens explain the defined

commands needed.

One command called onerow will collect all the

bottles in one row.

Two commands are needed to turn Karel from one row onto the next:

wturn and eturn

97

Using these three defined commands, students write a program to collect all the bottles.

Lines: 50

Objects collected: all

Commands: def

The structure of the program is laid

out, with comment lines used as

headings for each part.

Remind students to look for repeated

patterns. They will need to use if

conditions to pick up the bottles.

Upon completion of 11.7, students will see this

message, summarizing what the skills and concepts

learned in Section 11. Section 12 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

What are the advantages to writing defined commands?

 Can be used many times in the program by simply putting in the defined command name

 Easier to edit as a separate set of code

Compare your solutions with a partner. Did you come up with the same code, or were there different

ways to solve the maze?

Think of a real life scenario where a robot would have to repeat a set of commands over and over again.

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment:

The best way to cement a concept is to use it. As in Karel 1 and 2, students can use Creative Suite to

create a game for Karel that creates a defined command and then uses it in a program. Have them

picture a set of tasks that Karel would have to repeat. The student instructions are on the following

page.

98

END OF SECTION 11: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that requires some repeated action that can be used to define a command (15

points)

● The game will include at least one defined command def (10 points)

● The game will include a program section that calls the defined command (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

99

SECTION 12 (LEVELS 12.1-12.7)

Objectives: Students learn that a new command should always be tested on a simple task first, and then

it can be safely used as part of a larger program. They also learn advanced maze skills: how to follow a

line that is on Karel’s left, or one that is on Karel’s right.

Vocabulary: no new terms. Section 12 continues to develop skills learned in Section 11.

Prerequisite Skills

Section 11 must be completed in order to unlock Section 12.

Background knowledge/Introductory Set/Purpose:

In Section 11, we built a defined command for waterbox before using it to collect water bottles from

three waterboxes. This is a sensible practice: test a component before including in a larger program.

This would be true for any type of assembly. Think of a car. The average car is made up of about 2,000

parts. Many of these parts form assemblies. We would want to test and troubleshoot the parts

themselves, the parts assemblies, and finally, the whole car, before setting up our assembly line to

produce thousands of cars.

In this section, you will build on your understanding of defined commands, testing them before creating

a complex program. You will also learn more about navigating an arbitrary maze (one with no pattern).

Direct Instruction/Guided Practice:

Since this level builds on Section 11, there are no new videos. Demonstration levels 12.4 and 12.6 show

how to follow an arbitrary path, by either following a wall to left, or to the right. These can be viewed

and discussed as a class.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

100

Levels 12.1-12.7: Self-paced instruction

12.1 Karel places 6 bags of popcorn on the shelves (bottom row, starting from the right).

Lines: 20

Fill all containers

Commands: def, repeat

This is an example of a defined

command place6 that will be used

in a larger program in 12.2

12.2 Karel uses place6 to place bags of popcorn on all 36 shelves.

Lines: 30

Fill all containers

Commands: def, repeat

12.3 Karel then collects all 36 bags of popcorn to feed the monkey.

Lines: 30

Collect all objects

Commands: def, repeat

Students practice writing a similar

program to 12.2 with some changes.

This time Karel is getting instead of

putting.

101

12.4 Step-through demonstration level. Karel follows a winding (arbitrary) path.

Ask students, what is controlling

Karel’s movements?

To go along the pathway, Karel uses

the wall to guide him. As long as

there is a wall, he keeps moving and

testing for turns. Therefore, we can

use the while wall condition as

part of the defined command move.

12.5 Karel follows a path to find the monkey, collecting any bananas along the way.

Lines: 15

Objects to collect: 5

Commands: def

Students write a defined command

move similar to Level 12.6, which

includes an if condition to collect

bananas.

The program is partially written.

Students might notice that Karel has to check every square, even though we can see many empty

sections from our birds-eye view.

12.6 Step-through demonstration level.

This time, Karel follows a wall to his

right, instead of his left, as in 12.4

and 12.5.

102

12.7 Karel follows the monkey along a path that is to his right, collecting all the bananas.

Lines: 15

Objects to collect: 5

Use: def

This time, students write the entire

defined command move themselves

and call it in the main program.

Upon completion of 12.7, students will see this

message, summarizing what the skills and concepts

learned in Section 12. Section 13 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Why is the command right written before the conditional loop while wall? Why is the command

go written after the loop? (Karel turns right each time to check for a wall, but he has to keep moving

whether or not there is a wall. The only command within the loop is left. This command ensures that

Karel keeps moving along the wall, and not heading off into the jungle)

Programs and defined commands can modified slightly to fit a new set of conditions:

What changes did you make from 12.2 to 12.3? (The start position is different, so the repeated sections

come first, and the single section comes second instead of vice versa. Within the defined command

place6, the command put was replaced by get.)

What changes did you make from 12.5 to 12.7? (The path was to the right of Karel, so the left and

right commands had to be switched within the defined command move.)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using defined commands, and movement along

a path or wall. A possible assessment is on the following page.

103

END OF SECTION 12: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that requires some repeated action that can be used to define a command (15

points)

● This time, create a wall of some kind for Karel to move along.

● The game will include at least one defined command def (10 points)

● The game will include a program section that calls the defined command (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

104

SECTION 13: LEVELS 13.1-13.7

Objectives: Students learn that the shortest program may not always be the best. A slightly longer

program that is much faster, is better than a slightly shorter program that takes a lot of time. Students

know to break a complex problem into smaller tasks which are solved first.

Vocabulary: no new terms. Section 13 continues to develop skills learned in Section 12.

Prerequisite Skills

Section 12 must be completed in order to unlock Section 13.

Background knowledge/Introductory Set/Purpose:

In Section 12, we started breaking down large tasks into smaller ones, making sure those worked first

before using them as part of a larger program. In this Section, we are still testing small components,

then applying them, but we will also see how the same task can be solved in different ways. How do we

choose which is best for the situation?

For example, when you first learned to multiply, it was probably easier to skip count: 3, 6, 9, 12, 15, 18.

As you learned your multiplication facts it became easier to simply multiply 3 x 6 = 18. However, maybe

you have to get to 18 using nickels and pennies. Then, (3 x 5) + 3 makes more sense.

When we write code, we evaluate the conditions of the problem and decide the best way to solve it.

We look for some optimal combination of

Reliability: does the code work correctly every time? Try all the mazes. Does it work in each

one?

Speed: does the program work quickly?

Ease of use: is the code easy to understand and repair?

Limitations: is the code limited to certain conditions? For example, does the path have to be

straight in order for the code to work?

Make notes on the different ways of solving the same problem. It’s handy to have a library of

algorithms that you can draw from depending on the application.

Direct Instruction/Guided Practice:

There are no videos or step-through demonstrations in this Section, so direct instruction is not

necessary. The levels are grouped like this:

13.1 solves a problem using a defined command move learned in Section 12, where Karel turns and

faces the wall every step, then makes a decision. 13.2 shows a basic set of steps to solve the same

105

problem but more quickly (defined command column). 13.3 runs column from 13.2 as part of a

larger program. Students should compare 13.1 and 13.3.

13.4 uses a combination of commands similar to move and column. This will be used again in 13.5.

13.6 creates a defined command cabin that will be used in 13.7

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion. At this stage, programming requires some thought and planning.

13.1 Karel follows a wall (as in Section 12), and collects all the pearls.

Lines: 10

Collect all objects

The program is written in the same

way as Level 12.5. The defined

command move is used to move

along the wall, collecting pearls.

Students may note how long it takes

to get through the maze. Karel’s

progress is slow because he checks

for a wall every step.

13.2 Karel collects all the pearls in one column.

Lines: 15

Collect all objects

Use: def

This time, a defined command

column is used to:

Travel straight to the north wall,

collecting pearls along the way.

Turn around.

Travel straight to the south wall.

Each loop is written as while not wall. In other words, Karel can keep going until he reaches

either the north wall on the first loop, or the south wall on the second loop.

This is a much faster algorithm. The limitation is that the path must be straight.

106

13.3 Karel collects all the pearls in several columns, using an algorithm similar to 13.2.

Lines: 20

Collect all objects

Use: def

The code from 13.2 is already written.

Students write the code for the main

program. Two repeat loops are

needed, one for the 14 columns

containing pearls, and one to go

home in the last column.

Students are asked to compare the number of operations in 13.3 to 13.1, which had only 9 lines, but 503

operations.

13.4 Karel collects apples and oranges along a row, then moves to the home square on the next row.

Lines: 20

Collect all objects

Use: def

This level uses a defined command

floor that combines walking

straight along the row to collect the

fruit (similar to column in 13.3), then

traveling back along the wall testing

for an opening (similar to 13.1).

13.5 Karel collects fruit along several rows, finding openings to the next row until he gets home.

Lines: 30

Collect all objects

Use: def

13.5 uses the defined command from

13.4, along with another column

type set of commands to return Karel

to the west end of each row after

going through the opening.

107

13.6 Karel collects all the gold coins in a room.

Lines: 30

Collect all objects

Use: def, repeat

Students create a defined command

cabin to collect all the coins. This

will be used again in 13.7. The

program uses a nested if condition

to test for walls (see 10.6 for an

explanation).

13.7 Karel collects coins from three rooms using the defined command from 13.6.

Lines: 40

Collect all objects

Use: def, repeat

Students use cabin to collect within

the cabins. This level can be solved in

different ways, but encourage

students to look for repeated

patterns. (The number of squares to

the second cabin is the same as to

the third cabin)

Upon completion of 13.7, students will see this

message, summarizing what the skills and concepts

learned in Section 13. Section 14 is now unlocked.

Students also earn the Purple Belt of First Degree

certificate.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

In this level, we practiced several ways to navigate a maze and collect objects. Compare the commands

used to build move, column, and cabin. What are advantages and disadvantages to each algorithm?

(move is flexible because it can follow irregular paths, but it is slow and requires a lot of operations.

108

column is fast but needs a straight path, cabin used a simple procedure to check for turns, but a fixed

number of repetitions, so it require knowing the number of objects to collect.)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using defined commands, and movement along

a path or wall. A possible assessment is on the following page.

109

END OF SECTION 13: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that uses more than one way to move in a maze and collect objects.(15 points)

● The game will include at least one defined command def (10 points)

● The game will include a program section that calls the defined command (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

110

SECTION 14: LEVELS 14.1-14.7

Objectives: Students learn how to create new variables and initialize them with numbers. They use the

function inc() to increase the value of a variable by one, the function dec() to decrease the value of a

variable by one, and the print command to display results. The print command can be used to display

the values of variables while the program is running.

Vocabulary:

Programming terms

Variable: in terms of programming, variable is the name and value of something that will be

recorded in memory. The counting variable will be used in the lessons in Section 14.

When used in a program, the initial value of the counting variable is set. For example, n=0 sets the

initial value of n to zero.

inc(n)tells the program to increase the value of n. The default increment is 1.

dec(n)tells the program to decrease the value of n. The default is -1.

print(n)tells the program to print the final value of n after the program has ended. Text strings

can be printed out on their own or as part of a command. The text is always enclosed in quotation

marks.

 Example:

 Print “Placed one bottle.” will print “Placed one bottle.”

 Print (n) “bottles remain.” will print “36 bottles remain.” (if n=36)

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Section 13 and a basic understanding of defined commands.

Background knowledge/Introductory Set/Purpose

In Section 11, we learned how to create defined commands to streamline our programming. We then

learned algorithms that can be used to create effective defined commands. We will now explore the

power of the variable. A variable can be used to collect data that can be useful in analysis or application

to a task.

111

There are many types of variables used in programming, but we will only focus on the counting variable

in Section 14. There are many situations when a computer or robot might need to count and record

items. It could be the number of heartbeats in a minute, the number of items in a store inventory, the

number of cloudy days in a month, and so forth.

Big Idea: What kind of variables might be needed in a program? (answers to 5W questions: who, what,

where, when, why, how many, how much, etc.)

Purpose:

- Section 14 (Levels 14.1-714.7) introduces writing variables, specifically counting variables, and

printing statements about the results.

-

Direct Instruction and Modeling:

The main type of variable you will be using is a counting variable, for example, n. We set an initial value

for n, which could be any number, depending on what we are starting with. Karel uses the if condition

to check for whatever it is we have chosen to count, and either increases or decreases the value of the

variable, depending on what we need. For example, in the first levels, Karel is counting the maps that he

picks up. He starts with no maps (n=0). Each time he finds a map (if map), he picks it up (get) and

increases the value of n (inc(n)). The program adds these up, one by one. The total can be printed

at the end (print(n)).

Watch the introductory video in Level 14.1 together as a class, or have students watch it on their own.

http://youtu.be/RNEhx1iz_k4

The programs uses the print command to write a statement. A statement that makes sense will

need words that are not just commands. These words, called a text string, are always enclosed in

quotation marks, so that they aren’t mistaken for commands. You will see the printed line in an orange

box after you run Karel through the program (you may need to scroll down to the end).

You can also go through the code in the demonstration level 14.1 together, so that students can see

how the defined command increments the counting variable, and how the program prints the results. (

The programs are starting to become more complex. We have been using comment lines as headings.

Here, comment lines can include more explanation about what the program is doing. Text strings can be

included as descriptors in the lines of code as well. These descriptions will always start with the # sign.

This tells the computer to ignore them when it reads these # signs. Get into the habit of describing the

function of each custom command just before the code, and describing what will be printed out just

before the print line.

 Individual/Group practice: The program is designed to be used individually by students. Encourage

peer support, sharing and discussion.

http://youtu.be/RNEhx1iz_k4

112

Self-paced instruction 14.1-14.7

14.1 14.1 begins with a video that introduces variables, followed by a screen that explains how to

write a counting variable. The next screen is a step-through demonstration. This shows how the

counting variable works and the results, which are printed out using the print command.

http://youtu.be/RNEhx1iz_k4

Karel collects an unknown number of

maps, counting each one as he picks

them up.

A log is kept of every step and the total

number of maps found is printed at the

end of the program.

This is what the print log looks like:

http://youtu.be/RNEhx1iz_k4

113

14.2 Karel walks to the home square, collecting and counting maps.

Lines: 10

Collect all objects

Use: get, go, if, inc, map,

print

Students practice writing the same

program, using variables, setting the

initial value of the variable to 0 (n=0),

and printing out the results. This can

be done without text strings, in which

case the printout will simply “5”. The text strings make a better statement.

14.3 This time, Karel goes around the room, collecting and counting maps.

Lines: 15

Collect all objects

Use: get, go, if, inc, map,

print

This program is similar to 14.2, but is

repeated 4 times with turns. The

suggested repeat lines (4 sides, 8

steps for each side) are already

written.

Challenge: solve this level in 13 steps (great!), in 10 steps (awesome!) (both are in the solution manual)

14.4 Karel tests for breaks in a pipeline (wall), reporting the number of breaks at the end.

Lines: 15

Use: go, if, inc, left,

not, print, right, wall

Students write a program to count

missing sections until they reach

home, printing the results at the end.

This level can be solved with while

not home and the algorithm that

turns Karel towards the wall each

time, counting if the wall is not

present.

114

14.5 Karel performs the same task as 14.4, but this time on three sides.

Lines: 20

Use: go, if, inc, left,

not, print, right, wall

Students write the same program

within a while not wall loop.

Even though wall refers to both the

stone wall and the pipeline, the

sensor wall still works because it is

used in different parts of the

program. Why can’t we use repeat loops? (the walls are different lengths)

14.6 Step-through demonstration level, showing how to use the dec command to decrease a count.

Karel had 5 water bottles. He fills the

empty shelves and then counts how

many bottles he still has in his pocket.

14.7 Karel is carrying out a similar task in a room full of shelves. The program is already written but

needs a few repairs.

Students need to change 3 numbers,

correct indents, and insert a line.

See Solution manual for the corrected

version. This is a good “trial and

error” level: students will see the

effects of errors that haven’t been

corrected.

115

Upon completion of 14.7, students will see this

message, summarizing what the skills and concepts

learned in Section 14. Section 15 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Write out the main steps needed to use a variable in a program. (create the variable; initialize it by

assigning a value to the variable; increase or decrease the value of the variable based on a condition

using inc() or dec(); print the value of the variable after the program is completed)

Describe two situations in real life where a counting program could be useful.

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables. A possible assessment

is on the following page.

116

END OF SECTION 14: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that uses items that need to be counted.(15 points)

● The game will include a counting variable. (10 points)

● The game will print out a log of what was being counted, and a statement of the total at the

end. Use text strings so that the log and statement make sense. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

117

SECTION 15: LEVELS 15.1-15.7

Objectives: Students learn how to define new functions and return values using the keyword return, use

functions inc() and dec() to increase / decrease the value of a variable by more than one. They know

that the value returned from a function can be stored in a variable, and if the returned value is not used,

it will be automatically printed. Any code typed after the return command is dead. Variables defined

inside commands and functions are local, and local variables cannot be used outside of the command or

function where they were defined. Variables created in the main program are global, and global

variables should not be used inside commands and functions.

Vocabulary:

Programming terms

Function: a defined command or set of commands based on a variable that returns a value. In

Section 15, functions inc() and dec() are used to increase or decrease a variable by more than one (in

Section 14, the program only counted up or down by 1).

Local variable: a variable created within a command or function. A local variable cannot be used

 outside of that particular command or function.

Global variable: a variable created in the main program. A global variable cannot be used inside of a

 command or function.

Return: the return command ends the function, returning a final value for the variable.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours.

Prerequisite skills: Completion of Section 14.

Background knowledge/Introductory Set/Purpose

In Section 14, we learned how to use variables to count items or events. However, we were restricted

to counting by one. In this section, we write functions based on variables, which can be used for more

complex relationships.

Let’s say I’m running a futuristic household where robots comply with our every wish. My robot’s job is

to count how many guests are present today and where they sit. Then the robot will order three

appetizers and a beverage for every guest and deliver them to the correct locations. We can actually

write a program that will do this, using functions and variables. Later on, we will learn how to use

coordinates that could be added to this scenario to deliver refreshments to the correct locations.

In Section 14, we increased and decreased values of the variables by one. Now, we will learn how to

change the values by any number. So getting three appetizers for every guest will not be a problem.

118

Big Idea: What kind of variables might be needed in a program? (Students might think of answers to

5W questions: who, what, where, when, why, how many, how much, etc.)

Purpose: Learn how to define and use functions.

Direct Instruction and Modeling:

Explain definition of a function. Students are already familiar with defined commands and variables.

Now we combine the two: a function is a defined command that includes a variable.

Step-through Level 15.1 can be viewed and discussed as a whole class to introduce functions.

Level 15.4 and 15.5 explains the difference between a local variable (one that can only be used within

the function) and a global variable (one that is used in the main program), and how to transfer values

from the local to the global variable. This could also be viewed and discussed as a class after students

have worked through 15.2 and 15.3, or reviewed after the Section.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 15.1-15.7

15.1 This demonstration level shows how to define a function that includes a variable. In this case

the function wire is created to find the length of a powerline in s units. s is initially set to zero. As

Karel walks along the powerline (while wall), s is incremented each time he faces the powerline

(wall) . At the end, the total number of s units is

returned and can be printed.

Stepping through the program will

show how the function works.

119

15.2 Karel is again measuring a length of wire. The program is already written, but contains an error.

Use: go, def, home, inc,

left, not, return, right,

wall, while

Students must discover the error and

repair the program (all commands

must be written before return or

they will not be executed)

15.3 15.3 builds on 15.2. Karel must first walk to the wire, find its end, and then start counting units.

Lines: 30

Use: go, def, home, inc,

left, not, return, right,

wall, while

Students define a command

leftend to find the left end of the

wall. This is another useful algorithm.

Move along the wall until the not

wall condition is met, then move

back one square to start measuring.

15.4 15.4 is a demonstration on why a local

variable must be renamed to be used within the

main program. The first three screens explain the

problem. Then, students rewrite one line in the

program.

The variable g is created within the function.

The function ends on line 8 with the return command. But we try to use g in the print statement on line

11. If we run the program, we will get an error message stating that g is undefined.

120

On the program screen, students learn

how to rewrite a line to create a global

variable result, so that the value of

g, now result, can be called in a

print statement.

Here’s how:

Replace Line 10 cleanup with

result = cleanup

Note that the numerical value for g

will still print if the function is called without renaming the results. However, the print command will

not be able to use g as part of a statement.

15.5 15.5 builds on 15.4, showing how the variable

can be set to a certain value in the main program

before calling the function. This now makes it a

global variable, which will be recognized in the main

program.

The step-through demonstration

shows how this works.

However, the screen also warns

that it is not good practice to use a

global variable within a function.

It is still preferable to use a local

variable, then rename the function

in the main program.

15.6 Karel counts crates in a row and reports the number of crates.

Lines: 25

Use: crate, def, go, inc,

left, print, return,

right, while

Students write a function row to

count the crates and return their

number. The program is partially

written. The program is similar to

15.3

121

15.7 Karel counts all the crates in a rectangular array.

The first screen describes how the value returned

from counting row can be used as an integer.

This integer increase the count along the column by

the row value rather than by 1.

Lines: 40

Use: crate, def, go, inc,

left, print, return,

right, while

The code from 15.6, which returns a

value for row, is already written.

Students complete the second

function, which increments total by r

(the value returned from row), for

each crate.

Upon completion of 15.7, students will see this

message, summarizing what the skills and concepts

learned in Section 15. Karel 4 is now unlocked.

Students also receive a Purple Belt of Second Degree

diploma.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Describe functions as defined commands (functions are a type of defined command that contains a

variable. It can be used within a program, but not elsewhere.)

What is the difference between local and global variables? How do we export the value from a local

variable to a global variable? (Local variables only work within a function. We export the value by

defining a variable equal to the function, such as result = row. Then we can call result within a

command such as print.

What other lengths and areas in real life situations could be measured using a function program?

Assessment: Assessment is built into the program. Students must complete a level successfully in order

to unlock the next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables (see following page).

122

END OF SECTION 15: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that uses items that need to be counted.(15 points)

● The game will include a function that uses a counting variable. (10 points)

● The game will print out a statement of the total at the end. Use text strings so that the log

and statement make sense. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

123

KAREL JR UNIT 4

Karel 4 Overview:

SECTION 16: Students learn how to use the gpsx sensor to determine Karel's horizontal position in the maze, and

use the gpsy sensor to determine Karel's elevation in the maze. They also use the symbols ==, !=, < and >. They

know that gpsx is 0 in the left-most column and 14 on the right-most one, gpsy is 0 in the bottom row and 11 in the

top one. The keyword and ensures that conditions are satisfied at the same time, and the keyword or makes sure

that at least one condition is satisfied. Parentheses should be used for expressions such as (gpsx == 7), (gpsy < 3).

SECTION 17: Students learn how to use Boolean (logical) values True and False, store them in Boolean or logical

variables), return Boolean values from Boolean functions, and use Boolean variables in conditions and while loops.

Students know that Karel's sensors such as wall, nugget, mark, empty, north etc. are Boolean functions. With

Boolean variables they can do logical operations such as and or or. The symbol = is used to assign a value to a

variable, and for mathematical equality ("is equal to") the symbol == is used. The result of a comparison such as a

== b is either True or False.

SECTION 18: Students learn how to generate random integers using the function randint(), make Karel repeat

something a random number of times, calculate the maximum and the minimum of a given set of numbers. They

know that the function randint(6) can be used to simulate rolling dice.

SECTION 19: Students learn how to create empty and non-empty lists, append items to a list using append(), go

through list items one at a time, and get the length of a list L using len(L). They know that lists are like variables,

but they can hold multiple values.

SECTION 20: Students learn how to remove and return the last item of a list using pop(), remove and return the

first item of a list using pop(0), get the length of a list using len(), use the for loop to go through lists one item at a

time, and merge lists. They know that list items can be numbers, Boolean variables, and even text strings. Lists

can contain other lists, such as for example [gpsx, gpsy] pairs.

124

SECTION 16: LEVELS 16.1 – 16.7

Objectives: Students learn how to use the gpsx sensor to determine Karel's horizontal position in the

maze, and use the gpsy sensor to determine Karel's elevation in the maze. They also use the symbols

==, !=, < and >. They know that gpsx is 0 in the left-most column and 14 on the right-most one, gpsy is 0

in the bottom row and 11 in the top one. The keyword and ensures that conditions are satisfied at the

same time, and the keyword or makes sure that at least one condition is satisfied. Parentheses should

be used for expressions such as (gpsx == 7), (gpsy < 3).

Vocabulary:

 Sensor: gpsx, gpsy use the grid coordinates to locate Karel (gps is “Global Positioning System”).

 gpsx = 0, gpsy = 0 is the southeast corner square of the maze.

 gpsx indicates the point along the horizontal x axis, measured in grid squares starting on the

 west (left) side.

 gpsy indicates the point along the vertical y axis, measured in grid squares starting on the south

 (bottom) side.

 == means “is equal to”. For example, “gpsx == 8” means “The x coordinate position equals 8.”

 != is a symbol that means "is not equal to". For example, “gpsx != 7” means “The x coordinate

 position is not equal to 7.” This is useful when you want to carry out a task on every square

 except the ones flagged with !=. Make sure the two symbols are together with no spaces in

 between.

 < and > serve the same function as in math. gpsx < 4 would mean “All gpsx locations less than

 4.” gpsy > 6 would mean “All gpsy locations greater than 6.”

 Expressions can be combined with all these symbols. For example: (gpsx > 9) and (gpsy < 5)

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Karel 3 (Section 15).

Background knowledge/Introductory Set/Purpose

Location, location, location! One of the most important parts of programming a robot is pinpointing

the location before it carries out a task. This is true for plotters (pen position), for spot welders on a car

125

assembly line, for playing chess, for a farmer using GPS to plant his corn, even for our robot serving

beverages and appetizers in our deluxe household.

In 2 dimensions, we use an x and a y axis. In 3 dimensions, we add a z axis. In Karel’s simple, 2-

dimensional maze, we just count the number of squares from the southwest corner.

The sensors have names: gpsx counts squares along the x axis from left to right. Gpsy counts squares

along the y axis from bottom to top.

If students need concrete experiences with this idea, walk out coordinates on floor tiles or tiled game

boards, such as chess or checkers.

Big Idea: why do we need to know a robot’s position? (think of examples similar to those above)

Purpose: Section 16 (Levels 16.1-16.7) introduces using gps sensors.

Direct Instruction and Modeling: If students aren’t familiar with xy coordinate systems, practice naming

squares on a chessboard. Name the southwest corner square (0,0), or gpsx = 0, gpsy = 0. Practice

locating and naming different squares on the chessboard.

Another way to demonstrate coordinates is to show a real Global Positioning device (if you can’t get

signal near a window, you may need to take the device outside). The display will show coordinates

changing as the unit is moved from one location to another.

The demonstration levels 16.1 (gpsx), 16.3 (gpsy) and 16.5 (both gpsx and gpsy) can be viewed and

discussed as a whole class. There are no videos on this level.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 16.1-16.7

16.1 Step-through demonstration level. Karel places an oxygen tank on gpsx == 8.

Note that each square can be

reported. The print out shows Karel’s

progress as he moves from square to

square: “My gpsx is 3”.

126

16.2 Karel places an oxygen tank at gpsx location 4 and goes home.

Lines: 4

Use: go, gpsx, if, put

Students write a program to carry out

Karel’s task, using gpsx.

16.3 Step-through demonstration level. Karel uses gpsy sensor to put oxygen tanks on all steps

except step 7.

The print log shows the gpsy location

for each step.

Notice that the program uses

If gpsy!=7, meaning put the tanks on

all squares except for gpsy7.

16.4 Karel descends to the home square, placing oxygen tanks on all squares except gpsy2.

Lines: 20

Use: go, gpsy, if, left,

put, right

Students write the entire program,

using if gpsy!=2 to place the

tanks.

Challenge: solve the puzzle in 13 lines

(OK), 8 lines (Awesome!). Both

solutions are in the Solution Manual.

A simple repeat loop will do the trick.

127

16.5 Demonstration level showing the use of less than, greater than.

Karel moves through the maze,

finding oxygen bottles and then

placing them in a specific area

defined by gpsx < 3, gpsy > 8

Note the green marks in the

northwest corner where Karel will

place the tanks.

16.6 Karel collects oxygen tanks and places them in a designated area.

Lines: 15

Use: get, go, if, left, put,
right

Note: do not use the sensor mark.

If students are stuck, they can click on

the scroll icon (which will appear in

the upper left screen) to load the

code from the previous screen. This

can be edited to fit the new maze

conditions.

16.7 Karel carries oxygen tanks up to the peak of two mountains, and places one tank on the each

peak.

Lines: 15

Use: go, gpsx, home, if,

left, not, or, put,

right, wall, while

The code to climb over the two peaks

is already written. Students add the

code to get and place the tanks, using

gpsx and gpsy coordinates.

128

Upon completion of 16.7, students will see this

message, summarizing what the skills and concepts

learned in Section 16. Section 17 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Identify the gpsx = 0 row and the gpsy = 0 column.

Write an equation for the top (northernmost) row.

Write an equation for the column farthest to the right (easternmost side).

Explain the difference between using and and or in a condition. (and requires that both conditions

must be met; or requires that either one or the other condition is met)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables. A possible assessment

is on the following page.

129

END OF SECTION 16: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a complex maze (15 points)

● The game will need gpsx and gpsy to solve the puzzle (for example, to pick up or place objects

in specific places). (10 points)

● The game will include at least one feature from previous levels, such as repeat loops,

conditional loops, defined commands, variables or functions. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

130

SECTION 17: LEVELS 17.1 – 17.7

Objectives: Students learn how to use Boolean (logical) values True and False, store them in Boolean or

logical variables), return Boolean values from Boolean functions, and use Boolean variables in conditions

and while loops. Students know that Karel's sensors such as wall, nugget, mark, empty, north etc. are

Boolean functions. With Boolean variables they can do logical operations such as and or or. The symbol

= is used to assign a value to a variable, and for mathematical equality ("is equal to") the symbol == is

used. The result of a comparison such as a == b is either True or False.

Vocabulary:

 Boolean operator: a logical operator True or False.

 True indicates that a condition is true.

 False indicates that a condition is false (does not exist, for example).

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Section 16

Background knowledge/Introductory Set/Purpose

True/False statements are basic logic. A computer uses true/false statements at the machine level, and

at the programming level.

At the machine level, a computer works on the presence or absence of electrical impulses: either

something is on, or it is off. From there, we can build all kinds of logic gates. For example, we can

compare information from two sources: on/on, on/off, off/on, off/off, and so forth. We can build some

pretty complex pathways using these simple gates. The most basic machine level programming uses

binary code to represent the on/off condition: 1 = on; 0 = off.

At any programming level, we can use true/false sensors to make decisions. We can also use the

sensors to map out the location of objects: for example, which squares contain coins? This is how the

built-in sensors in Karel work: a function checks to see if an object or condition is there (true) or not

(false), then outputs a decision about what action to take. This is a powerful programming tool. We

can combine true and false conditions using and, or, not to make more complex decisions.

Boolean algebra is named after George Boole, a 19th century English mathematician who developed the

idea of logical operators.

131

Big Idea: What kinds of decisions are made in electronics, by computers, and by robots? Do humans

make decisions this way?

Purpose: Section 17 (Levels 17.1-17.7) introduces using Boolean operators.

Direct Instruction and Modeling: The demonstration levels 17.1 (using True/False), 17.4 (True/and) and

17.6 (False/or) can be viewed and discussed as a whole class. There are no videos on this level.

Individual/Group practice: The program is designed to be used individually by students. Encourage

peer support, sharing and discussion.

Self-paced Instruction: Levels 17.1-17.7

17.1 Step-through demonstration level. Karel reports on the presence (true) or absence (false) of

specific sensors.

As students step through the first

screen, they should ask themselves:

“Which steps are logical functions

that return a True or False result?”

They will see the results printed in a

print log. It should be evident that

Karel is looking for a specific sensor in

each spot. If it is present, the return

will be true. If it is not present, the

return will be false.

Here is the print log for 17.1:

17.2 Karel picks up either a snake or a spider on his way home. He will report one way if he found a

snake (True), and another if he did not (False).

Lines: 15

Use: False, get, go, snake,

spider, True

The program is partially written.

Students fill in the logical operators.

132

17.3 Karel is exploring a ruin. If he finds an object he will pick it up. If it is a nugget, the results are

True; if a gem, the results are False.

Lines: 20

Use: False, gem, get,

nugget, True

The program is partially written.

Students complete code needed in

the function ruin, which tests whether

the object is a nugget or not.

The program prints out a statement

based on the results. (“I found a gold

nugget!” if true, “I found a gem!” if false)

17.4 Step-through demonstration level. Karel checks to see if the row is completely filled with

bottles. He collects them and makes a statement about the row at the end.

The function checkrow sets the

logical statement cr=true at the

beginning. If a bottle is found, the

statement is reset as true; if not, it

changes to false. This is an example if

a statement that starts out true.

The and operator is used as part of

the testing statement.

17.5 Karel checks all four corners of a ruin for water bottles, returning different statements

depending on whether or not there are water bottles.

Lines: 25

Collect all objects

Use: 4, get, go, if, left,

not, return, True, wall

The statement b=true starts as true.

If any water bottles are missing when

Karel turns left corners, then the

statement will change to b=false.

133

17.6 Step-through demonstration level Karel is looking for a lost map.

When he finds it, the statement will

become true and the printed

statement will be “I found the map!”

This is a case where the logical

statement starts out false, which is

the opposite of 17.5

Notice that an or condition is being

used as a test this time.

17.7 Karel walks through the maze on his way home. If he finds a nugget, the logical statement will

change from false to true.

Lines: 25

Collect all objects

Use: go, gpsx, home, if,

left, not, or, put, right,

wall, while

The code is partially written. Students

add missing code, including the logical

operators.

Upon completion of 17.7, students will see this

message, summarizing what the skills and concepts

learned in Section 17. Section 18 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Explain how true/false values can be written into functions (assign a value to a variable).

134

What is the purpose of True/False values? (True/False values can map an occurrence, collect data,

change or keep the condition of a larger set such as a row, make a decision on what action to take.)

Think of examples of True/False values in the real world. How do computers, robots and humans use

them?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using True/False values as part of a Boolean

function. A possible assessment is on the following page.

135

END OF SECTION 17: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a complex maze (15 points)

● The game will use True or False operators to report back findings. (10 points)

● The game will include at least one print statement based on the logical results. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

136

SECTION 18: LEVELS 18.1 – 18.7

Objectives: Students learn how to generate random integers using the function randint(), make Karel

repeat something a random number of times, calculate the maximum and the minimum of a given set

of numbers. They know that the function randint(6) can be used to simulate rolling dice.

Vocabulary:

 Random: a random value is selected without regard to pattern, order, or reason. Each value

 within the set has an equal chance of being selected. A coin has an equal chance of landing

 heads or tails. A die has an equal chance of landing with 1, 2, 3, 4, 5 or 6 face up.

 Randint: a command that selects a random integer. The command is written randint(n),

 where n is an integer between 1 and n.

 Maximum: the greatest value out of a set of values. The maximum is determined by a function

 that compares values.

 Minimum: the least value out of a set of results. The minimum is also determined by a

 function.

Time required:

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills: Completion of Section 17

Background knowledge/Introductory Set/Purpose

People are familiar with the idea of randomness from playing games that involve chance. If you have

ever rolled a die, then you have generated a random number. The die randomly selects how many steps

you will take in the next turn. Why? Random selection ensures fairness among the players, and it also

makes the game less predictable and therefore more exciting.

Randomness also occurs to some extent in nature, although what appears to be random often contains

poorly defined patterns, or some form of bias that favors one result over another.

Random numbers are useful in many computer applications. Here are some examples:

 Testing has many applications for random numbers. In a medical trial, patients can be randomly

 selected as to whether they take the active medication or the placebo. Students taking a test

 may be randomly assigned test questions from a pool.

137

 Art and design, especially computer animation, use random placements to make a surface look

 more natural, such as a pebble beach, or an animal’s fur.

 Lotteries and games of chance depend on random numbers, although the probabilities are very

 carefully calculated to favor the house. Lotteries can also be used to fairly distribute scare

 items, such as tickets to an event, hunting tags, and so forth.

Purpose: Section 18 (Levels 18.1-18.7) introduces the use of random numbers in functions.

Direct Instruction and Modeling: The demonstration levels 18.1 (using the roll of a die to advance

Karel), 18.5 (determining the maximum height of a randomly generated set of columns) can be viewed

and discussed as a whole class. There are no videos on this level.

If students are unfamiliar with random selection, they can run tally mark trials on:

 Coin tosses (heads/tails)

 Four tiles, each a different color (such as the plastic or wooden square tiles used as math

 manipulatives) drawn from a bag.

 Die rolls

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 18.1-18.7

18.1 Step-through demonstration level. Karel must “roll a 6” in order to pass.

In this case randint(6)is going to

generate a number between 1 and 6.

Once a 6 is rolled, then Karel will be

able to proceed to home.

A while loop tells the program to

keep rolling until 6 is the result.

while die != 6

Students will see the results of each

roll on the print log.

138

18.2 Karel must roll a 6 on each of two die to pass

Collect all objects.

Use: bulb, get, go, if,

randint

The program is partially written.

Students fill in blanks, including the

function and loops for the random

number generators.

18.3 Karel builds a column with a random height.

Lines: 20

Use: left, put, randint,

repeat

The program is partially written.

Students complete code needed to

build the column, return back to the

base, then turn and go home.

18.4 Karel builds a skyline, using the function column from 18.3.

Lines: 20

Use: left, put, randint,

repeat

The function column is already

written. Students complete the

program by running a repeat loop.

139

18.5 Step through demonstration level. Karel builds a skyline as in 18.4. This time, he also calculates

the maximum height of the skyline.

Lines: 30

Use: left, put, randint,

repeat

A function is used to determine the

maximum height. At first, the

maximum is set to zero (m=0). Each

time a new height is calculated, it is

compared to m. If it is greater than m,

the value of m is changed to the value

of h.

18.6 Karel collects all the lightbulbs and calculated the maximum height of the columns.

Lines: 30

Use: left, get, go, repeat

Students practice writing the function

used to calculate the maximum, as in

18.5. Most of the program is already

written.

18.7 Karel collects all the lightbulbs and calculates the minimum height of each column.

Lines: 30

Collect all objects

Use: left, go, get, repeat

The code is similar to 18.6, except

that we start by comparing to a

maximum (set by our randint range

value), and only decrease the variable

when it compared to a column height

that is shorter.

The code is partially written.

140

Upon completion of 18.7, students will see this

message, summarizing what the skills and concepts

learned in Section 18. Section 19 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

How do you generate a random number in a program (initialize a variable, use the command randint(),

make the variable equal to the random number)?

How do you repeat the rolls of a die until a certain value is reached (see 18.1)?

Explain the process of finding a maximum or minimum (see 18.5, 18.7).

Think of two real life scenarios where a robot or a computer could use random numbers. (Post ideas on

a common board).

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using random integers. A possible assessment is

on the following page.

141

END OF SECTION 18: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game that will accommodate a randomly generated pattern (such as the skyline in

18.5). (15 points)

● The game will use randint to generate the pattern or make the choice. (10 points)

● The game will include at least one print statement based on a maximum or minimum. (10

points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

142

SECTION 19: LEVELS 19.1 – 19.7

Objectives: Students learn how to create empty and non-empty lists, append items to a list using

append(), go through list items one at a time, and get the length of a list L using len(L). They know that

lists are like variables, but they can hold multiple values.

Vocabulary:

 List: A list is a set of items, enclosed in square brackets and separated by commas. For example:

 L = [2,2,8,3,4]

 Empty List: A list that does not contain any items, shown by empty square brackets. For

 example: L = []

 Non-empty List: A list that contains items. For example: L = [1,6,8,3]

 Append: Add items to a list. For example: L.append (x) , L.append ([gpsx, gpsy]). Notice that

 two or more items must be enclosed in one set of parentheses.

 Parse: Examine the items in a list. The items can be printed out as a line-by-line log of the list,

 using a For loop.

 For loop: A for loop is able to iterate (repeat a function) for items in a list. It is indented the

 same way as other loops. For example, a for loop can print out a log of these items:

 for x in L

 print “current list item:”, x

 resulting in

 Length of a list: len(L)is the number of items in the list.

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills: Completion of Section 18

Background knowledge/Introductory Set/Purpose

We have learned how to find items and count them, sense conditions (True/False), generate a group of

items using random numbers, use gps coordinates. All of these functions can generate useful data that

we may want to store and use. This is where lists come into play. We can make lists of anything from

143

True/False determinations to gps locations. In this section, we will learn how to add items to a list using

append, and to analyze the contents of a list. In the next section, we will learn how to extract items

from a list using pop.

If we want to make an exact replica of a map or an item, we can record all the details in a list, then copy

each item in the list. Each item in the replica will be in exactly the same position as the original. One of

the greatest advances in assembly lines is using robotics to build exact copies of an original design with

great precision

Another common use of lists is in inventory. We buy or create items for inventory, and then use or sell

items from inventory. The inventory list not only tells us how many items are in this list, but also the

order of when the items are added to or taken from the list (more about this in Section 20).

Purpose: In Section 19 (Levels 19.1-19.7) students learn how to store values in a list, print out some or

all the items in a list, retrieve them from a list, and append one list to another list.

Direct Instruction and Modeling: The video and demonstrations in 19.1, 19.4, and 19.6 can be viewed

and discussed as a class. Here is the link:

https://www.youtube.com/watch?v=POLH6ouTtrM

The video is followed by three screens that explain empty and non-empty lists, and how to append to a

list. 19.1 finishes with a step through demonstration.

19.4 steps through the process of parsing and printing out a list.

19.6 steps through how to obtain and use the length of a list (number of items in the list).

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

https://www.youtube.com/watch?v=POLH6ouTtrM

144

Self-paced Instruction: Levels 19.1-19.7

19.1 19.1 begins with a video that explains how lists

work.

https://www.youtube.com/watch?v=POLH6ouTtrM

It then moves on to three screens that introduce

the concept of lists (empty lists, non-empty lists,

how to append to a list).

In the step-through demonstration,

the gpsx locations of the orchids are

stored in a list.

Each time Karel locates an orchid, the

gpsx value is appended to the list.

https://www.youtube.com/watch?v=POLH6ouTtrM

145

19.2 Karel collects orchids on a diagonal path, recording the gpsy location of each one in a list.

Lines: 20

Collect all objects

Use: append, gpsy, orchid,

print, repeat

Students write a program to create a

list, collect the orchids and append

their gpsy locations to the list.

19.3 Karel collects orchids and makes a list of both the gpsx and gpsy coordinates.

Lines: 20

Collect all objects

Use: append, gpsx, gpsy,

orchid, print, while

Students complete the code, using

algorithms for checking columns as in

previous levels, creating a list and

appending the locations to it.

19.4 Step through demonstration level. Parse lists (analyze the list, one item at a time) and print out

a log of all the items in the list.

To do this, we use a for loop and a variable.

for x in L

 print “current list item:”, x

which results in:

146

19.5 Karel uses a list of gpsx locations to place the orchids in his pocket.

Lines: 10

Use: go, gpsx, put, while

Think about what causes Karel to stop

walking: he reaches one of the gpsx

coordinate on the list. The while

condition for go will be while

gpsx != x.

19.6 Step-through demonstration level. Learn how to use the length of a list.

We define a variable as the length of

the list:

n = len(Z)

The length tells us how many items

there are in the list.

Note that the variable s is specifically

described as the number of steps

before placing the next orchid.

19.7 Karel uses a list to tell him how many steps to take before placing an orchid.

Lines: 30

Use: go, if, put, wall

The program from 19.6 is already

written. Students just need to direct

Karel’s actions, using the familiar wall

testing algorithm, and making a

couple of other small changes.

Note: the orchids print out a word.

147

Upon completion of 19.7, students will see this

message, summarizing what the skills and concepts

learned in Section 19. Section 20 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Show examples of the following: empty list, non-empty list (examples: Z=[]; Y=[1, 8, 3, 7, 7, 2, 5])

What does the length of a list tell us? (how many items are in the list)

How does a for loop work? (A for loop repeats a function for items in a list. In this Section, for loops

are used to print a list of the items)

Think of a profession. How could a person in that profession use lists in a program? (one example could

be a farmer using gps equipment to plant and monitor his field)

Asssessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables. A possible assessment

is on the following page.

148

END OF SECTION 19: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a maze that contains several objects in different locations. (15

points)

● Generate a list by appending coordinates of objects and retrieving those objects. (10)

● Print out a list of these coordinates using a For loop (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

149

SECTION 20: LEVELS 20.1 – 20.7

Objectives: Students learn how to remove and return the last item of a list using pop(), remove and

return the first item of a list using pop(0), get the length of a list using len(), use the for loop to go

through lists one item at a time, and merge lists. They know that list items can be numbers, Boolean

variables, and even text strings. Lists can contain other lists, such as for example [gpsx, gpsy] pairs.

Vocabulary:

 pop: removes an item from a list and assigns it to a variable. Either the last item or the first

 item is removed. For example

 la = L.pop() removes the last item and assigns it to variable la

 fi = L.pop(0) removes the first item and assigns it to variable fi

 Empty List: A list that does not contain any items, shown by empty square brackets. For

 example: L = []

 Non-empty List: A list that contains items. For example: L = [1,6,8,3]

 Append: Add items to a list. For example: L.append (x) , L.append ([gpsx, gpsy]). Notice that

 two or more items must be enclosed in one set of parentheses.

 Parse: Examine the items in a list. The items can be printed out as a line-by-line log of the list,

 using a For loop.

 For loop: A for loop is able to iterate (repeat a function) for items in a list. It is indented the

 same way as other loops. For example, a for loop can print out a log of these items:

 for x in L

 print “current list item:”, x

 resulting in

 Length of a list: len

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills: Completion of Section 19

150

Background knowledge/Introductory Set/Purpose

In Section 19, we learned how to create and analyze lists. Now we will learn how to remove items from

a list so that we can use them elsewhere. We’ve already talked about a couple of important applications

for lists: inventory and assembly line work. Lists are also used in research, and even video games.

Inventory accounting uses a couple of methods for calculating the cost of taking items out for sale or

use. One is FIFO, which stands for First In First Out. This method uses the cost of the oldest items first

The other method is LIFO, or Last In First Out. LIFO uses the newest cost first, which makes sense if cost

have gone up, you want to keep the value of your inventory low, and your expenses higher against your

income. Lists can do the same functions: we can extract the first items off the list, or the last items of

the list depending on our purpose.

In assembly line work, we want to build each units exactly the same as the original. A list can map out

all the components of the original, then copy those components for each unit that is manufactured.

We also want to be able to combine information from various sources, or merge lists. Perhaps we want

to take a population census. We collect information from each household to produce a list for one

town. This list is combined with lists from other towns, cities and rural areas to create data for the

whole county. Each county’s lists is combined to create data for the state, and so forth.

Video games keep track of your progress in many ways: the types of items you collect, your gear (for

example, armor and weapons), the levels and achievements, the success of yourself and your group.

This data is stored and used just like the real life.

Purpose: In Section 20 (Levels 20.1-20.7), students learn how to extract items from a list to use

separately, to build other lists, and merge to form larger lists.

Direct Instruction and Modeling: The demonstration levels 20.1 (using L.pop() and L.pop(0)), and 20.6

(merging lists) can be viewed and discussed as a whole class. There are no videos on this level.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 20.1-20.7

20.1 20.1 begins with instructional screens

showing how to use the pop function on lists. Items

can be removed one at a time and assigned to a

variable. We can either remove the last item on the

list, or the first item. The examples on the screen do

this:

 la = L.pop() removes the last item and assigns it to variable la

151

 fi = L.pop(0) removes the first item and assigns it to variable fi

Step-through demonstration: Two lists

are created. The first one has items

removed starting with the last item.

The second list has items removed

starting with the first item.

20.2 (part 1 of 2) Karel collects all the masks in one room, saving their locations to a list.

Lines: 20

Collect all objects

Use: append, get, go, False, home, if, left, not, right, True, wall,

while

Students complete missing lines of

code in the program. (Note: if they

don’t precede While not home with a

go command to enter the room, the

total count will be 61 instead of 60.

The 60 count is significant because

there is one list entry for every square

unit of the 10x6 room.

Instead of using gpsx and gpsy

coordinates, we use True (if a mask is

present) and False (if a mask is not present).

152

20.3 (part 2 of 2) Karel places the masks in the second room in exactly the same locations.

Place all objects

Use: go, home, if, left, not, pop, put, right, wall, while

Students write a program to remove

the masks from the list using the pop

command, starting with the last mask

because they are entering the room

from the rear.

Step by step instructions are listed in

the upper left screen.

Reminder: one equal sign assigns the

value to the variable (la = M.pop()).

Two equal signs mean equal in a

relationship (if la == True).

20.4 Karel maps out an underground labyrinth by

making a list of all the steps and turns. The number of

steps (go) are recorded as numbers, left turns are

recorded as True, and right turns are recorded as False.

Lines: 20

Use: and, append, else, if,

inc, left, not, right,

wall, while

Students complete the program.

Step-by-step instructions are included

in the upper left screen. A variable is

needed to count the steps (the

solution manual names the variable

counter, but any name will do).

153

20.5 Karel uses the map of the underground labyrinth to place masks. He will place one mask for

every step.

Lines: 20

Use: go, left, len, pop,

put, right, while

Students write a program, following

the step-by-step instructions in the

upper left screen.

For example, the program will

continue until the list is empty, so that

is written as a condition (if P.len(0)).

Notice that the if P.pop(0) statement checking for True does not use the word True. It is assumed.

20.6 Step-through demonstration level. Learn how to merge lists.

Merging is done by removing items from one list (fi =

A.pop(0)) and adding them to the end of the other

list (B.append(fi)).

Here is the print log of each step in this example:

154

20.7 Karel collects all the masks in each room, recording their gpsx and gpsy coordinates in a list.

Lines: 40

Collect all objects

Use: append, get, if, mask,

pop, repeat, wall

The program uses oneroom as a

defined function. This function is

applied to each of the three rooms.

Most of the program is written.

Students practice appending the results of room 2 (R2) and room 3 (R3) to the list for room 1 (R1).

This could be done by popping the items out of a list into a variable, then appending that variable to the

other list. A simpler way to merge the lists is to combined the two tasks into one line:

R.append(R2.pop(0))

Upon completion of 20.7, students will see this

message, summarizing what the skills and concepts

learned in Section 20. Karel 5 (Section 21) is now

unlocked. Students also receive a Purple Belt of

the Third Degree certificate.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Review the commands for removing first and last items off a list.(Level 20.1)

Explain how to merge lists. (Level 20.6)

At the beginning of Section 20, we discussed how lists can be used for inventory, assembly line work,

research and video games. Think of other applications you might have for lists.

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using lists. A possible assessment is on the

following page.

155

END OF SECTION 20: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a maze. Copy the maze to a second game. (15 points)

● The first game will generate a list by appending coordinates of objects and retrieving those

objects.

● The second game will use this list to distribute the objects in Karel’s pocket. Note: it is easy to

fill Karel’s pocket with objects. Just click on the pocket icon in Designer Mode, then drag

items to fill the pocket. You will be prompted for the quantity. The items can be changed or

erased as needed.(10 points)

● The game will include at least one log of the items making up the list. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

156

KAREL JR UNIT 5

Karel 5 Overview:

SECTION 21: Students learn how to use the function rand to create True or False with 50-50 probability. They use

the function rand in conditions and while loops, and in in maze algorithms. They know that 50-50 probability

means that the two events are equally probable, and that rand and rand yields 25-75 probability, which means

that the former event is three times less probable than the latter.

SECTION 22: Students learn how to use recursion, which is a command or function that calls itself. They know

that recursion is suitable for tasks that can easily be reduced in size, that the recursive call must be placed in a

stopping condition, and that failure to use a stopping condition easily turns recursion into an infinite loop.

SECTION 23: Students review and practice previous sections: how to use stopping conditions in recursion, how to

make the recursive call from inside a stopping condition, how to split complex tasks into simpler ones, how to use

inequalities, how to get the length of a list, how to increase and decrease values, and how to pop items from lists.

SECTION 24: Students practice all their skills from previous sections in more complex tasks.

SECTION 25: More practice with complex tasks (optional)

157

SECTION 21: LEVELS 21.1 – 21.7

Objectives: Students learn how to use the function rand to create True or False with 50-50 probability.

They use the function rand in conditions and while loops, and in in maze algorithms. They know that 50-

50 probability means that the two events are equally probable, and that rand and rand yields 25-75

probability, which means that the former event is three times less probable than the latter.

Vocabulary:

 rand: a function that creates True or False with 50-50 probability. Calling a rand function is

 like tossing a coin.

 rand and rand: the combined function creates a 25/75 probability

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Karel 4 (Section 20).

Background knowledge/Introductory Set/Purpose

In Karel 4, we learned about True/False operators and random number generators. We wrote functions

to simulate the roll of a die. Here, we learn a new function rand that simulates a 50/50 coin toss, with

an equal probability of returning True or False. We are giving the computer or robot the ability to guess,

which is useful in situations which are not fixed and reliable.

Think of moving blindly around a space. You don’t know the location of targets and obstacles. You still

have the power to decide to go left or right by tossing a coin. Even if you are not successful on that

particular coin toss, you can repeat the procedure as many times as you need to eventually find your

target.

To visualize how this works, play the coin toss as a game on the floor, using floor tiles as a maze and a

target object, or on a chessboard with a one chess piece moving and the other as a target.

You may have situations where you must make decisions fairly, without bias, not favoring one outcome

or the other. Tossing a coin is often used for this purpose.

What if we have information that suggests one outcome is more likely to occur than the other? We can

modify our coin toss to favor that outcome. rand and rand combines the results of two coin

tosses, so that only one combination out of four will be true, and the other three will be false (true and

true, true and false, false and true, false and false).

158

Purpose: Section 21 (Levels 21.1-21.7) introduces using probability to solve problems.

Direct Instruction and Modeling: There are no videos on this level. Any or all of the following levels can

be viewed and discussed as a class, or reviewed afterwards:

 21.1 demonstrates rand in three different settings: as a repeat loop, as an if/else

 conditional loop, and as a while loop.

 21.3 demonstrates distributing based on rand.

 21.4 explains how rand and rand can be used to generate a 25/75 probability.

 21.5 and 21.6 demonstrate the problem with trying to locate an object in open space using a

 column type algorithm (21.5) and a follow-the-wall type algorithm (21.6). In both levels,

 students stop the program and click on the code template icon to re-run the scenario with

 rand.

Individual/Group practice: The program is designed to be used individually by students. Encourage

peer support, sharing and discussion.

Self-paced Instruction: Levels 21.1-21.7

21.1 Step-through demonstration level. Learn how the rand function works.

Karel and Sophia come to a

marketplace. They are looking for a

chance to earn money.

This level demonstrates rand in a

repeat loop, and if/else conditional

loop, and a while conditional loop.

21.2 Karel walks to his home square. In each square, he randomly chooses whether or not to buy a

rug.

Lines: 4

Use: 13, get, go, if, rand,

repeat.

Students write a repeat loop that

contains an if rand condition to

help Karel decide whether or not to

pick up a rug.

159

21.3 Demonstration Level, showing an example of 50/50 distribution based on rand. Karel places a

rug on the top row if rand returns true, or on the bottom row if rand returns false. The rugs should be

about evenly distributed.

This program takes a while to run. It

will print out a log at the end, showing

all the outcomes. Students could tally

up all the heads and tails outcomes in

their running of the program and

compare results with each other

(perhaps post notes on a common

board).

21.4 Karel again places rugs, this time with a 25/75 distribution.

The upper left panel explains how

rand and rand produces a 25//75

distribution, and showing an example.

Students modify the previous program to make it work as a 25/75 distribution.

They only need to modify one line in

the main program, redefining the

variable r as shown in the upper left

panel.

As in 21.3, have students tally and

compare their results.

160

21.5 Demonstration: Karel needs to collect a rug from an enclosure.

A program is written using a simple column style maze algorithm learned in previous sections. Because

of the location of the rugs, Karel will never find them using that algorithm. In addition, this program

produces an infinite loop.

Students are encouraged to run the

program and see this for themselves.

However, if the program is modified

to use the rand function, Karel will

eventually find a rug by random

choice.

By stopping the program, clicking on

the code template on the bottom of

the screen and resetting the program,

students will be able to view the rand program instead.

Since this program uses a random function, run times will vary. Have students compare run times.

Can this level be solved using a systematic approach that does not depend on random choices?

(Answers vary)

21.6 Demonstration: Karel needs to collect a rug from an enclosure.

This time, the first program is written

using a “follow the wall” algorithm.

Again, it will fail to locate the rugs.

 As in 21.5, students should first run

this program, reset and click on the

code template, then run the second

program.

It can be amusing to watch Karel’s

random movements. He acts as

though he has no idea what he is doing!

Students should make note of the program. 21.7 is similar. The program starts with while not

empty. Once Karel finds a rug, the program will end. Notice that within the if rand condition, if

not wall tests first; else is used to test the if wall condition.

161

21.7 Karel is once again looking for

rugs in an enclosure. Use rand to

complete the program.

Lines: 20

Use: get, go, if, left,

rand, right, rug

See notes under 21.6 for how to write

the loops.

Again, students could write down their

run times and compare results.

Is there a way to search this maze systematically rather than relying on a random function?

Upon completion of 21.7, students will see this

message, summarizing what the skills and concepts

learned in Section 21. Section 22 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Explain how rand and rand works. (see explanation in the background section).

When would you use rand in a program? (examples: making fair choices, distributing fairly, finding

objects in uncertain locations)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables. A possible assessment

is on the following page.

162

END OF SECTION 21: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a complex maze (15 points)

● Use rand to guide Karel’s choices. This could govern where to place objects, or where to find

them. (10 points)

● The game will include at least one feature from previous levels, such as repeat loops,

conditional loops, defined commands, variables or functions. (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

163

SECTION 22: LEVELS 22.1 – 22.7

Objectives: Students learn how to use recursion, which is a command or function that calls itself. They

know that recursion is suitable for tasks that can easily be reduced in size, that the recursive call must be

placed in a stopping condition, and that failure to use a stopping condition easily turns recursion into an

infinite loop.

Vocabulary:

 Recursion: a command or function that calls itself.

 The recursion occurs within the body of the loop.

 It must have a stopping condition. If not, it can turn into an infinite loop.

 Stopping condition: a condition that ends a loop.

 Infinite loop: a loop that theoretically could continue operating infinitely. Most programs have

 a timer that would eventually time out the loop.

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Section 21

Background knowledge/Introductory Set/Purpose

We have already learned how to build loops and know which ones to use depending on what we need

to do.

 A repeat loop is used when we know exactly how many times we must repeat a command.

 A conditional while loop is used when we can inquire about a condition, act on it, and stop when

the condition ends.

 A for loop is used when we are working from a list. When we have used all the input data from

 the list, the loop ends.

Recursion is another kind of loop. The word “recursion” comes from a Latin word that means to run

back. In a sense, that is exactly what the program is doing: running back and repeating the command

until it is no longer needed. Recursive loops are memory intensive and not suitable for large repetitions.

A stopping condition has to be written into the loop, or it becomes infinite. In other words, it will keep

164

calling itself forever. However, most programs will time out or report a stack overflow and stop the

loop. In Karel, the recursion is written as a defined function. Once the recursion has finished, return

is written outside the body of the loop to return to the main program.

Purpose: Section 22 (Levels 22.1-22.7) Students will learn how to write recursive loops with correct

syntax and stopping conditions.

Instruction and Modeling: Section 22 begins with a video on Recursion. The demonstration levels 22.1

shows an example of a recursion: Karel repeats a set of commands (moving forward and picking up

shields) until he reaches the home square (the stopping condition). The video and step-through

demonstrations can be watched and discussed as a class. One of the introductory screens in 22.1

explains recursion as follows:

“Recursion is an advanced programming technique. It can be used to solve problems which, by doing

just a few operations, can be reduced to the same problem which is just smaller in size. Like this one,

where Karel needs to walk to his home square and collect all shields:

After making one step and collecting one shield, Karel still needs to walk to his home square and collect

all shields!

 “

22.3 steps through the same recursion, with the stopping condition missing. Students must repair the

program. 22.4 steps through the same recursion with the recursion outside of the stopping condition

loop. Again, after watching the demonstration, students repair the program. These levels may be

reviewed and discussed at the end of the Section.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 22.1-22.7

22.1 22.1 begins with a video on recursion. Students can

press play or follow the link on the screen. Here is the link:

165

https://www.youtube.com/watch?v=zPkig_0dpNM&feature=youtu.be

The next screen explains recursion.

After Karel moves forward and picks up a shield, he

still needs to move forward and pick up shields.

He continues to move forward and pick up shields

until he has collected all the shields and reached the

home square.

The command set “move forward and pick up a shield” is called over and over again. This is a recursion.

The next screen is a step-through demonstration, so students can see how the recursion works.

22.2 Karel picks all the shields in his path and puts them in boxes on the way home.

Lines: 15

Use: box, get, go, home,

if, not, put, shield

The program is partially written.

Students complete the code.

Notice that if not home is used

instead of while not home. That

is because each square must be

tested independently before calling

the recursion. If not home is the stopping condition.

(Watch for indent errors: the recursive walk must be in the body of the if not home condition.

The recursive walk is followed by a return line, which is not part of the if not home condition.)

https://www.youtube.com/watch?v=zPkig_0dpNM&feature=youtu.be

166

22.3 Begin with a step-through demonstration of the same task: what happens if the stopping

condition is missing? (Karel keeps going past home and crashes into the wall)

Step through the program and

observe the error. Then reset, repair,

and rerun the program.

22.4 Step-through the demonstration again. This time, the recursion is not inside the stopping

condition loop. What happens? (the program goes into an infinite loop)

Reset, repair, and rerun the program.

.

22.5 Karel must sweep the room for footprints, and pick up all the shields.

Lines: 155

Collect all objects

Use: def, get, home, if,

not, return, shield, wall

Students write a recursive function

named sweep. The program is

partially written.

167

22.6 Karel cleans up the oil trail left by the burglar, then goes home.

Lines: 20

Collect all objects

Use: def, go, home, if,

not, oil

Students write two functions: one

called gowest to travel west and

pick up the oil, and the other called

goeast to return back to the home

square.

22.7 Karel needs to find his hat and pipe on the way to the exit.

Lines: 15

Collect all objects

Use: def, hat, home, if,

not, pipe

Students write the recursive function

search without using loops.

Challenge: a 13 line program is good,

an 11 line program is awesome.

Upon completion of 22.7, students will see this

message, summarizing what the skills and concepts

learned in Section 22. Section 23 is now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

What are the key elements of recursion? (The command calls itself. The recursion must be embedded

in a loop that includes a stopping condition.)

168

Try rewriting a while loop as a recursive loop, or vice versa. How do the programs compare? (Number

of lines, number of operations, run time)

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using counting variables. A possible assessment

is on the following page.

169

END OF SECTION 22: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a maze that requires a simple, repetitive task. (15 points)

● The game will include at least one defined, recursive function to perform this task. (20

points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

170

SECTION 23: LEVELS 23.1 – 23.7

Objectives: Students review and practice previous sections: how to use stopping conditions in recursion,

how to make the recursive call from inside a stopping condition, how to split complex tasks into simpler

ones, how to use inequalities, how to get the length of a list, how to increase and decrease values, and

how to pop items from lists.

Vocabulary: No new vocabulary

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Section 22

Background knowledge/Introductory Set/Purpose

Writing recursive loops is a great way to learn more flexible programming. In Section 23, we continue to

explore recursion in more complex situations. What is the stopping condition? Can we write a program

that ends at home without using the keyword home? How can we clear an array in a way that is not

row by row (or column by column)? How do we use recursion with lists and inequalities?

Purpose: Section 23 (Levels 23.1-23.7) Students practice and refine their understanding of recursion.

Direct Instruction and Modeling: There are no demonstrations or videos on this level. There are paired

levels: 23.2 is used to solve 23.3; 23.6 is used to solve 23.7. Instruction is embedded in each level.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 23.1-23.7

171

23.1 Karel locates the robber’s phone and ends at home.

Lines: 15

Use: def, if, phone,

return, wall, randint

Students write a program to perform

the tasks using a recursive function.

They cannot use the word home.

Think of a condition that is present

during the procedure, but goes away

at the end.

23.2 (Part 1 of 2) Karel finds the robber’s candy. He collects candy from one row.

Collect 6 objects.

Use: candy, def, go, if,

return

Students define a recursive function

row and use it to collect one row of

candy. Students should start thinking

of stopping conditions that are based

on the situation. This stretches their

ability beyond fixed repeats and while

not home conditions. Have them

think about the task, and what might end it.

23.3 (Part 2 of 2) Karel collects all the candy in the robber’s bounty.

Lines: 20

Collect all objects

Use: candy, def, home, if,

left, not, return

Students use the recursive function

row from 23.2 within the recursive

function bounty to collect all the

candy. This time, they can use home

as a stopping condition.

172

23.4 As part of the investigation, Karel adds up a series of numbers.

Lines: 15

Use: def, if, inc, dec

Students complete the program by

filling in missing code. This recursive

function decreases n and increases

result by n (see Section 15 regarding

counting variables).

The return line is not needed.

23.5 Now Karel must add up transactions in a list.

Lines: 15

Use: def, if, inc, pop

Students complete the program by

filling in missing code. Use pop to

add items to result (see Section 20

for an explanation on how to pop

items from a list).

23.6 (Part 1 of 2) Karel eats all the pies in one row and goes home.

Lines: 10

Use: def, get, go, if, pie,

return

Students write the program, including

the recursive function edge. This

function is written the same way as

23.2. home is not allowed.

173

23.7 (Part 2 of 2) Karel collects all the lightbulbs and calculates the minimum height of each column.

Lines: 25

Collect all objects

Use: def, go, if, left,

pie, return

Students complete the program by

filling in missing code. This is another

recursion within a recursion. Think of

where Karel needs to be to start

eating the next edge. The program

spirals inward until all the pies are eaten.

How does this compare to the defined commands used in 11.7 (onerow, wturn, eturn)?

Upon completion of 23.7, students will see this

message, summarizing what the skills and concepts

learned in Section 23. Students also earn a Black

Belt in the First Degree certificate. Section 24 is

now unlocked.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

What were the stopping conditions in each level?

Compare programs for spiral pathways to programs for row-by-row pathways in arrays. Do you see any

advantages to using one over the other?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a game using recursions with one of the features learned

in Section 23, such as recursions within recursions (splitting complex tasks into simpler ones), or

recursions based on lists, or recursions based on unusual stopping conditions (such as inequalities). A

possible assessment is on the following page.

174

END OF SECTION 23: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a complex maze (15 points)

● The game will use recursions. (10 points)

● The game will include at least one skill learned in Section 23, such as breaking complex tasks

into simpler ones (recursions within recursions), or recursions based on lists, or unusual

stopping conditions (for example, inequalities). (10 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

175

SECTION 24: LEVELS 24.1 – 24.7

Objectives: Students practice all their skills from previous sections in more complex tasks.

Vocabulary: no new terms.

Time required

Time required will vary based on student ability and experience. Most students will complete this

section in about 2 hours.

Prerequisite skills

Completion of Section 23

Background knowledge/Introductory Set/Purpose

Section 24 contains puzzles that require different skills to solve, including:

 Nested repeat loops, if/else conditions, and while conditional loops

 Defined functions with counting variables

 Logical operations and, or

 Complex patterns reduced to simpler tasks or patterns

 Lists and gpsx, gpsy coordinates

 Information from one part of a puzzle used to solve another part.

 Append and pop on lists

Purpose: Section 24 (Levels 24.1-24.7) Students practice previously learned skills in more complex

settings.

Direct Instruction and Modeling: There are no instructional step-through demonstrations and videos.

However, the programs are partially written and include comment lines as guides.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

176

Self-paced Instruction: Levels 24.1-24.7

24.1 Karel cleans up oil spills on the floor of the factory.

Lines: 10

Students write a program to collect

the four oil spills. The challenge is to

solve the level in 10 lines.

This level practices nested repeat

loops. Remind students to look for

patterns that can be broken down

into simpler patterns.

24.2 Karel collects all the chocolate coins, and counts the total.

Lines: 14

Collect all objects

Use: chocolate

Students write a program to collect all

the chocolate coins. The challenge is

to solve the level in 14 lines.

This level practices the wall-following

defined command learned in Section

12, and functions to increment

variables learned in Section 14.

Gps coordinates are used as a stopping condition: these are already written into the program. Students

should make a note of this for their own programs.

24.3 Karel follows the marks home, placing a chip on each mark as he goes.

Lines: 40

Fill all containers

Students write a program, following

the prompts on the comment lines.

While wall keeps Karel on the

path when it hugs the wall. Students

should think about what Karel should

177

do when he goes off the path without using a wall as a reference. Look for a consistent procedure Karel

can follow to get back on the path.

24.4 Karel uses a list of gpsx locations to place the orchids in his pocket.

Lines: 28

Collect all objects

This level again makes use of the wall-

following defined command move,

this time following the wall to the

right. This is an example of a simple

program that can be used in a

complex, arbitrary maze.

The program takes a while to run.

24.5 Karel checks the wall perimeter for escape routes and logs their locations. He collects water

bottles along the way.

Lines: 50

Collect all objects.

It is fairly simple to check whether not

wall is a hole in the wall or a corner.

Turning right in the space will either

show a wall or open space.

If there is a wall, the gps coordinates

can be written to the list; otherwise,

nothing is written to the list. The

solution manual explains how to use the lists.

24.6 Karel uses a list to tell him how many steps to take before placing an orchid.

Lines: 40

The key to this program is finding

what condition is unique to each

number. What is unique about a 1, a

4, and a 7? The program should

check for those conditions. See the

solution manuals for details.

178

24.7 Karel locates and collects all the coins and moves them to exactly the same positions in the

second room.

Lines: 50

Students write a program using

True/False criteria to map out the

rooms, similar to Section 17

The comments contain hints.

Upon completion of 24.7, students will receive a certificate for a Black Belt of 2nd degree and

congratulations. Section 25 is now unlocked and contains advanced puzzles to test and review coding

skills.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

This is an opportunity to review the course as a whole. Review notebooks, or use a notetaker to include

concepts, examples, questions, and summaries. What will students do with this knowledge?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. See Assessment section for journal and project ideas.

Suggested Game Assessment: Students create a complex game of their own design.

179

END OF SECTION 24: CREATE A GAME FOR KAREL (50 POINTS)

Create and publish a game for Karel in programming mode.

● Create a game made up of a maze. Think of what skills you would like to test and design the

maze accordingly. (15 points)

● Test at least two advanced skills that you have learned in the course (Defined functions and

variables, lists, Boolean functions, random functions, etc.) (20 points)

● When editing the game, write the objectives of the game under the Summary tab. (5 points)

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

180

SECTION 25: LEVELS 25.1 – 25.7

Objectives: Students practice skills that they have learned in Karel Jr on complex tasks.

Vocabulary: no new vocabulary

Time required

Time required will vary based on student ability and experience. Some of the puzzles are simple to

solve, while others require lengthy solutions.

Prerequisite skills

Completion of Section 24

Background knowledge/Introductory Set/Purpose

This is an enrichment level for students who like challenges. The level of difficulty is several steps above

the other levels. Many of the problems are classic logic challenges.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Self-paced Instruction: Levels 25.1-25.7

25.1 Karel measures the length of a fence, and collects all the corn along the way. He reports the

total length of the fence.

Lines: 12

Collect all objects

Students write a program that

increments a variable while moving

along the fence.

181

25.2 Karel orders a set of columns of random heights, arranging them from shortest on the left, to tallest

on the right.

Students write a program to move the

pearls to create the ordered columns.

The key is working on each row of

pearls, rather than each column.

25.3 Karel determines the area of the enclosure, then plants a row of tulips, one tulip for every square

unit.

This program uses gps coordinates to compare locations of the fence and calculate the area.

This level is similar to 24.6, in that one task is used to compute a value used in a second task.

How the program works:

Every time the robot faces the wall to

the south, it increases the square

count by its gpsy position minus 1. It

is actually counting that entire

column, which would be too many

squares. The count is lessened by the

number of times the robot faces the

wall to the north, which subtracts out

the count by its gpsy position from

the total.

25.4 25.4 opens with an explanation of the Cardin Grille.

“Cardan Grille, invented around 1550, belongs to the oldest encryption methods. The grille is a square

piece of paper or leather that is subdivided into smaller squares. Some of them are cut out. When the

grille is placed on a square table of letters, it reveals some of them. That's the beginning of the secret

message. When rotated by 90 degrees, the grille reveals the second part of the message, and so on. The

6x6 sample grille shown below can encode a message of 36 letters. For longer messages, a larger grille

such as 8x8 or 10x10 can be used.”

182

The second screen continues: “It is easy to make a mistake while creating a Cardan Grille. In that case,

more than one hole uncovers the same position in the table of letters during the rotation.

In the grille shown here, holes are represent by coins. The grille is invalid since

after two rotations, one of the corner holes ends up taking the position of the

other corner hole.

This grille has one more flaw besides the corners. Can you find it?”

Students write a function that tests

the Cardan grille for faults and prints

the result. Faults occur when the grill

is rotated and coins occupy the same

coordinates.

25.5 Eight Queens. This puzzle is based on a chessboard pattern: eight queens are placed on the

chessboard in positions where they cannot attack

each other. Reminder: queens can move

horizontally, vertically and diagonally for any

number of open squares.

Students write a program to check the pattern for flaws. Several mazes are available for testing.

This requires a lengthy analysis of

each queen’s position: can she attack

another queen in one of 8 directions?

With a human’s birds-eye view, it is

easy to see whether or not a queen

can attack another queen. However,

the computer does not have this

advantage. It must analyze the

problem, square by square.

A number of defined commands can be created and called to test each queen.

183

25.6 This level is similar to 24.5, in which Karel looks for holes in the wall and collects water bottles

along the way. This time the wall is irregular in shape.

Students write a function desert to count all the holes and report the total. The instructions do not ask

for gps coordinates this time.

The upper left panel gives a hint

about checking for adjacent walls.

25.7 Karel collects apples off a random binary apple tree. At any point, it can branch in the

northwest or northeast direction.

Note: this level cannot be cleared row

by row. Beware of the leafy wall

squares!

Follow each branch instead, testing

for branches by the presence of

apples.

Questions for post-session discussion (students can use their journals to write down their ideas and

responses) (10-20 minutes):

Undoubtedly, students who attempt this level will have their own questions and ideas. Have them post

these on a common chart to generate discussions.

Suggested Game Challenge: Students could research a mathematical puzzle and reproduce it using

Karel.

184

SECTION 25 CHALLENGE

Create and publish a game for Karel based on a classic math, logic or game challenge. Investigate

puzzles in books or on line. Can you make a game in Karel to reproduce one of these puzzles?

● As before, create a game made up of a maze of your choosing. Create different versions if

applicable.

● Design a solution

● When editing the game, write the objectives of the game under the Summary tab.

● Set the goals under the Goals tab. (5 points).

● Test the game and edit as needed.

● Copy the program into a document to make an answer key. Save this document to the NCLab

folder or a folder specified by your teacher.

● Publish the game to your folder. Inform someone else about the game by providing the link

on ____________________________________(5 points)

185

NOTES

