

Revision September 12, 2013

About the Textbook

This textbook is a companion of the interactive course “Solid Modeling with PLaSM” in
NCLab. With the help of many examples, review questions, and interactive exercises,
this course introduces the reader to basics of 3D visualization, RGB colors, 2D and 3D
shapes, geometrical transformations, and Boolean operations with geometrical objects.
In its advanced part it covers the concepts of reference domains, reference mappings,
and parametric curves and surfaces. This textbook along with over 100 interactive ex-
amples and exercises can be accessed through the PLaSM module in NCLab. Solution
Worksheets and a Solution Manual in PDF are available to instructors.

Since the beginning, the reader is exposed to computer programming — all colors,
objects, transformations and operations are defined via simple commands. The reader
also learns how to utilize more advanced elements of computer programming to sim-
plify and automate the creation of 3D designs. The combination of geometry and pro-
gramming is extremely powerful and rewarding. Are you not a programmer? No wor-
ries! The language is so intuitive that there is no need to know computer programming
in order to use it.

About the Authors

Dr. Pavel Solin is Professor of Applied and Computational Mathematics at the Uni-
versity of Nevada, Reno. He is an expert in scientific computing and the author of six
monographs and many research articles in international journals.

Dr. Alberto Paoluzzi is Professor of Computer Graphics and CAD Design at the
University of Rome in Italy, leader of the PLaSM project, and author of the famous
monograph Geometric Programming for Computer Aided Design, Wiley, 2003.

Acknowledgment

We would like to thank great teachers from NCLab Partner Schools for class-testing
the PLaSM module, and for providing useful feedback that is helping us to improve
the textbook, interactive exercises, and the PLaSM language itself.

Graphics Design: TR-Design http://tr-design.cz

Table of Contents

1 Getting Started......... ... 1
1.1 Solid Modelingand PLaSM i, 1
1.2 Launching PLaSM and running demo script............................ 1
1.3 BDprinting 4
1.4 3Dvisualization 5
1.5 RGBcolorso 7

2 Library of Simple Shapes i i i 8
21 CUDE ..o 8
2.2 Twowaystocolorobjects i 9
2.3 Planar squareii i 11
24 Squareasthin3Dsolid i 12
2.5 Brick ... 13
2.6 Planarrectangle.......... 14
2.7 Rectangleasthin3Dsolid.............o 14
2.8 Tetrahedron 15
29 Planartriangle 16
210 Triangle asthin 3D solid 17
211Sphere 18
212Planar circle 19
213Circleasthin3Dsolido i 20
2.14 Approximation of curved surfaces.............. 21
2A5PIISIN « ot 23
216 CylNnder. 24
217Tube ... 25
218 C0NE ..o 27
2.19Truncated CONE ...ttt 28
220T0TUS. .o 30
221Convex hull 32
222Dodecahedron 34
223Icosahedron 35
224 Extrusion of 2D objects to 3D o 35
2.25Grid and Cartesian product o 36

3 FirstProjects ... 39
3.1 Aquariumstand 39

3.2 Water molecule 45

3.3 Coffee table. 49

34 Geometrylabs 54
35 3Dpuzzle ... 72
Advanced TOpics. 74
41 XOROfODJEeCtS .. oo 74
42 Moreonscaling ... 75
4.3 Commands TOP and BOTTOMuuuuitiniiiee i, 77
4.4 General alignment operations i 78
4.5 Measuring dimensions and printing out information.................... 79
4.6 Boolean operations — doing it the wrong way, doing it the right way 80
Primer in Python Programming 84
5.1 Defining and using variables............... oo 84
52 The Numpy library....... ... 86
53 Pythonlists...... ... 86
54 Printing ... 87
5.5 LOOPS « vt 88
5.6 Example 1 - programming a polygon, 89
5.7 Example 2 - programming a cone.................o.oiuiiieiniaiian .. 90
5.8 Example 3 - programming arrays of objects 91
Advanced Projects 93
6.1 Carrousel...... 93
6.2 Temple ... 94
6.3 Sierpinskifractals 100
0.4 3D AT ... 104
Curves and Curved Surfaces i il 112
7.1 Referencedomainso 113
7.2 MappINg CUIVESttt 113
7.3 Mappingsurfaces 116
74 Threewaystomapasphere............. 118
7.5 Primeron Béziercurves 121
7.6 Surface with one curved Bézieredge................... 121
7.7 Surface with two curved Bézieredges 123
7.8 Surface with four curved Bézieredges L 124
79 Coonspatch 124
710Rotational surface o 125
7.11Solidifying asurface............ ... i 126
7.12Ruled surface - introductiono oL 127
7.13Ruled surface-spiral 128

7.14 Ruled surface - straight cylinder............... 130

7.15Ruled surface - curved cylinder ool 131

7.16 Ruled surface - spanning arbitrary 3D curves........................... 132
7.17 Generalized cylindrical surface.................ol 135
7.18 Generalized conical surface oL 136
7.19 Profile product surface 137
720Cubic Hermite curves ... 139

721 Cubic Hermite surfaceso oot e e e e 140

1 Getting Started

In this section we will:

— Learn basic facts about Solid Modeling and PLaSM.
— Learn to work with the PLaSM module.
— Learn about RGB colors.

1.1 Solid Modeling and PLaSM

The word "solid" in this context means "an object", as in "square is a two-dimensional
solid", "cube is a three-dimensional solid". Solid Modeling, sometimes also called 3D
Modeling or 3D Design, is a collection of rules and techniques for mathematical and
computer modeling of solids. It is distinguished from related areas such as computer
graphics by its emphasis on physical fidelity. In other words, accuracy of models that
are used in 3D computer games is very different from the accuracy that is required in
architecture, automotive industry, and other engineering areas. Solid Modeling is the
basis of computer-aided design (CAD), engineering simulations, and other disciplines.

This 3D modeling course is based on PLaSM (Programming Language of Solid
Modeling), a simple and elegant scripting language with Python syntax. In fact, PLaSM
is a Python library — colors, shapes, geometrical transformations and everything else is
defined via simple commands. Entire designs are simple Python programs. The PLaSM
module is connected to a powerful computational geometry engine on a remote server
where these programs are evaluated, and resulting 3D geometries are sent back to your
computer or tablet, and displayed in your web browser.

1.2 Launching PLaSM and running demo script
The PLaSM module can be launched via the CAD icon on Desktop:

Fig.1: CAD icon on NCLab Desktop.

Alternatively, one can use the Start menu located in the bottom-left corner of the browser:

The

£ nclab - NCLab 0.9 - Full version

& wMyfies 2 Admin
D Notepad 4% Settings
B math y | @ Help
-
b Physics y {5 My account
W My friends
=3 Programming 3 ® Bugs
@ web »
P cap »
=4 Computing »
® rea b
Elh Chemistry »
E Calculator
M FSObjects tester $l Logout

nclab (B 8- @ &« U 5

Fig.2: Start menu.

module opens with a demo script:

3 plasm-1-en - PLaSM

File =

Edit+ Settings~ Help~ Tools~ [A A

Welcome to PLaSM!

PLaSM (Programming Language of Solid Modeling) is a powerful scripting language for 3D design based on Python. Run the demo program by pressing the

green arrow button. The demo program can be turned off in Settings. The File menu provides access to Textbook, Projects, and Solution Manual.

Create a gray cube 'k' of size 2:

= CUBE(2)

Create a red cylinder 'c' of radius 0.75 and height 4:
= CYL(0.75, 4)

Make cylinder 'c' red:

= C(c, RED)

Tr_ela_?ilat? (mcive)lgube 'k' by -1 in every axial direction:
Translate the cylinder 'c' by -2 in the z-direction:

= T(c, 0, 0, -2)

Create new object 'c2' by rotating the cylinder
2 = R(c, 1, 90)

Make object 'c2' green:

c2 = C(c2, GREEN)

c' by 90 degrees about the x-axis:

OF0 T ORTE

Create new object 'c3' by rotating the cylinder 'c2' by 90 degrees about the z-axis:

c3 = R(c2, 3, 90)

Make object 'c3' blue:

c3 = C(c3, BLUE)

Subtract the three cylinders from the cube 'k':

k2 = D(k, ¢, c2, c3)

Move the new object 'k2' by four units in the x-direction:
k2 = T(k2, 4, 0, 0)

View all objects together:

lab.view(k, ¢, c2, c3, k2)

Fig.3: PLaSM module with a demo script.

Eli=11P=

q Search

« Saved

The purpose of the demo script is to illustrate to a newcomer quickly how PLaSM
works. In fact, it shows a lot of functionality:

— How to create a cube.

- How to create a cylinder.

- How to translate (move) objects.

- How to rotate objects.

— How to subtract objects from each other.
- How to display objects.

Run the demo script by pressing the green arrow button, and then allow few seconds
for processing on the cloud and data transfer back to your computer or tablet. The
resulting geometry is shown below:

#3 PLaSM - Output Window =o)X
A

File » Settings * Viewpoint: Bottom v Show mode *

FPS: 26.0
Start

Fig.4: Geometry created by the demo script.

Users who are familiar with Solid Modeling or have worked with another CAD system
before, will probably have PLaSM figured out by now. For all others — please keep in
mind that the demo script is a sneak-peek only.

3

1.3 3D printing

3D printing is the feature of our time, and NCLab fully supports it! Starting with Basic
Plan, NCLab’s users can send their designs to support@nclab.com We will measure
the volume and provide a quotation. The NCLab 3D printing service is non-profit and
therefore up to 50% less expensive that commercial 3D printing services. See Terms of
Use for details and pricing. Fig. 5 shows a 3D print of the drilled cube created by the
demo script.

Fig.5: 3D print of the drilled cube.

Fig. 6 shows a 3D print of a Roman temple model that we will build in Subsection 6.2.

Fig.6: 3D print of a Roman temple.

Fig. 7 shows a 3D print of a gear model that we will create in Subsection 6.4.

Fig.7: 3D print of a gear model.

1.4 3D visualization

To better understand how 3D visualization works, imagine that your computer screen
is a 2D plane that has a coordinate system (grid) attached to it: Horizontal axis X that
lies in the plane of the screen and goes from left to right, vertical axis Y that also lies in
the plane of the screen but goes from bottom to top, and a Z-axis that is perpendicular
to the screen, as shown in Fig. 8.

Y

Fig.8: Virtual grid associated with your computer screen.

The mouse can be used to rotate the object about all three axes X, Y and Z, and also to
move it in all these directions. So, although the computer screen is flat, the visual ex-
perience is 3D. Before we explain how it works, run the PLaSM demo script and stop
the rotation using the button in the upper right corner of the output window.

1. Turning

Hover the mouse pointer over the 3D object and press the left button. While holding
it down, move the mouse to the left and to the right on the desk. The object on the
screen will rotate about the Y axis. Moving the mouse up and down on the desk while
holding down the left button will result in rotation about the X axis.

2. Panning

The missing rotation about the Z axis cannot be made up by combining the X and Y
rotations. Therefore we use panning: Hover the mouse pointer over the object and press
the left button again. While holding it down, start describing with the mouse small cir-
cles on the desk in the counter clockwise direction. The object on the screen will start
tilting to the right (Z rotation). Similarly, circular motion in the clockwise direction will
tilt the object to the left. Combined with the X and Y rotations described in point 1,
now we have a complete set of all 3D rotations.

3. Moving

Holding down the middle button (or the mouse wheel) instead of the left one, and
moving the mouse left to right will move the object on the screen in the X direction.
Moving the mouse up and down on the desk will move the object in the Y direction.
Missing the Z direction? That’s why we have zooming!

4. Zooming

Zooming is done via the mouse wheel or by holding down the right mouse button and
moving the mouse up and down on the desk. The object on the screen moves in the Z
direction. The latter option is smoother. Hence, with zooming we have a complete set
of 3D motions on the computer screen.

The mouse controls only adjust the view of the model in the X, Y and Z coordinates
associated with your screen. They do not make any changes to the model itself.

6

1.5 RGB colors

According to the additive color model which is based on the human perception of col-
ors, every color can be obtained by mixing the shades of Red, Green and Blue (R, G
and B). These are called additive primary colors or just primary colors. The resulting color
depends on the proportions of the primary colors in the mix. It is customary to define
these proportions by an integer between 0 and 255 for each primary color. So, the re-
sulting color is a triplet of real numbers between 0 and 255:

| Color| R|[G [B |
Red [[255| 0 | O
Green| 0 |255| 0
Blue 0 0 | 255

These colors are shown in the following Fig. 9.

Fig.9: Pure red [255, 0, 0], pure green [0, 255, 0], pure blue [0, 0, 255].

When the proportions of all three primary colors are the same, the result is a shade of
grey. With [0, 0, 0] one obtains black, with [255, 255, 255] white:

Fig.10: Black [0, 0, 0], dark grey [128, 128, 128], light grey [220, 220, 220].

Guessing RGB codes is not easy. If you need to find the numbers representing your fa-
vorite color, the best way is to google for "rgb color palette”. You will find many pages
that translate colors into RGB codes. Fig. 11 shows three "easy" colors cyan, pink and
yellow along with their RGB codes.

Fig.11: Cyan [0, 255, 255], pink [255, 0, 255], yellow color [255, 255, 0].

In Subsection 2.2 we will learn how colors are assigned to objects in PLaSM. In Subsec-
tion 3.1 we will see how various objects in one scene can be colored differently.

2 Library of Simple Shapes

In this section we will learn to

— Create a variety of 2D and 3D shapes.
— Assign colors to objects.
— Create convex hulls and extrude 2D objects to 3D.

This section serves mainly as a database of shapes and it is intended for reference rather
than for systematic study. You may want to browse through it quickly to get an overview
what shapes are available, but our goal is to move to design projects quickly. Note in
Subsection 2.2 how colors are assigned to objects. Your first project is awaiting you in
Section 3 and it will only require cubes and bricks.

2.1 Cube

The command CUBE (a) creates a cube of dimensions a x a x a. Every newly created
object comes in a default steel color. To visualize objects, we use the VIEW command,
that can be abbreviated by V. Type the two lines below into the PLaSM input cell and
press the green arrow button:

c = CUBE (1)
VIEW (c)

After a moment, the following image should appear in your web browser:

Fig.12: Steel cube of dimensions a x a x a with a = 1.

Note that the cube is located in the first quadrant, with its edges aligned with the
coordinate axes z (red), y (green) and z (blue). One of its vertices lies at the origin
(0,0,0). Every cube created via the CUBE command will be positioned like this.

2.2 Two ways to color objects

The command COLOR, possibly abbreviated as C, assigns a given RGB color to a 2D
or 3D object. Its use is best illustrated on the previous example, where we change the
color of the cube from steel to brass:

c = CUBE (1)
c = C(c, BRASS)
VIEW (c)

Note that PLaSM keywords are written in capital letters. This is to avoid conflicts with
user-defined variables (names of objects, custom colors, etc.). For newcomers to pro-
gramming — in the above program, c is a user-defined variable (intentionally chosen
to be lowercase), and CUBE, C, BRASS and VIEW are PLaSM keywords. After executing
the script, you will see the following:

Fig. 13: Same cube as before, but now in brass color.

Note that the axes in the grid are color-coded using the word "RGB" for convenience:
r=R,y=G, z=B.

There is another possible way to display the cube c in brass color:

c = CUBE (1)
VIEW (c, BRASS)

This program is shorter but it does a different thing: The cube keeps its default steel
color while the VIEW command just shows how it would look like in brass color. This is
a great shortcut for experiments, but the former approach is preferable in real designs.

The keyword BRASS is just a predefined triplet of numbers [255, 250, 83].
PLaSM offers the following predefined colors:

GREY = [128, 128, 128]

GREEN = [0, 255, 0]
BLACK = [0, 0, O]
BLUE = [0, 0, 255]
BROWN = [139, 69, 19]

CYAN = [0, 255, 255]

10

MAGENTA = [255, 0, 255]

ORANGE = [255, 153, 0]
PURPLE = [128, 0, 128]
WHITE = [255, 255, 255]
RED = [255, 0, O]

YELLOW = [255, 255, 0]

and metallic colors:

STEEL = [255, 255, 255]
BRASS = [181, 166, 66]
COPPER = [184, 115, 51]
BRONZE = [140, 120, 83]
SILVER = [230, 232, 250]
GOLD = [226, 178, 39]

2.3 Planar square

PLaSM makes it possible to work in a two-dimensional setting of the axes = and y (in
addition to 3D). Here, the z axis is not present. The first 2D command that we will ex-
plore is SQUARE (a) which renders a square of edge length a. Its usage is illustrated by
the following script:

s = SQUARE (3)
s = C(s, BRASS)
VIEW (s)

The square is shown in Fig. 14. Again note where it is positioned - all newly created
squares are positioned like this.

11

