

TINA 1 PROGRAMMING COURSE

LESSON PLANS
FEBRUARY 28, 2016

1

OVERVIEW 2

EQUIPMENT AND ACCOUNTS REQUIRED; SUGGESTED AGE RANGE FOR STUDENTS AND

PREREQUISITES

3

TIME REQUIRED AND SUGGESTIONS FOR COURSE DELIVERY 4

CROSS-CUTTING CONCEPTS: MATH AND ELA STANDARDS 6

NEXT GENERATION SCIENCE STANDARDS 9

VOCABULARY, LANGUAGE AND PROGRAM SUPPORTS 10

BACKGROUND BUILDING AND SUPPORT ACTIVITIES 11

DEPTH OF KNOWLEDGE (DOK) AND BLOOM’S TAXONOMY 13

ENRICHMENT, REMEDIATION AND PROGRESS MONITORING 13

ASSESSMENT 14

LESSONS: INTRODUCTION 15

SECTION 1: BASICS (INCLUING A NOTE ON CREATIVE SUITE) 16

SECTION 2: LOOPS I 31

SECTION 3: LOOPS II 40

SECTION 4: NESTED LOOPS 47

SECTION 5: VARIABLES 55

2

OVERVIEW

Tina 1 is a series of lessons designed to teach students computational thinking and computer

programming as applied to graphics. The language itself is a simplified version of Python, which is used

extensively in engineering, science and design work. The basic concepts are common to all

programming languages. By the end of Tina 1, students will be able to write programs that draw

complex designs using loops, nested loops, and variables.

Tina can be learned independently or under the guidance of a teacher. The course is divided into five

sections, with eight levels in each section. Each level builds on the previous one and includes a tutorial

and hints if students are stuck. There are links to YouTube videos that explain the steps. The online

textbook, available from a drop down menu, describes the program and technical information in detail.

Although the program stands on its own, the value of the lessons is greatly enhanced by classroom

discussion and solution sharing. At any stage of the course, students can freely create and test designs.

By experimenting with line lengths, angles and repeated values, they will gain a deeper understanding of

geometry. Students can save designs to their own NCLab folder, publish and share links to the designs,

or submit them to NCLab for display on the Gallery page. Best of all, students can create an STF file to

print out their 3D designs!

3

EQUIPMENT AND ACCOUNTS REQUIRED:

● Personal computers or tablets, with Internet access: one per student. Both PC and MAC

platforms are supported. Tablets can also be used. Preferred browsers are Google Chrome or

Firefox.

● Projector or Smartboard (optional but recommended) attached to a computer for

demonstration or modeling

● Accounts: The Tina Course requires individual accounts for each student. Visit the FAQ page for

information on free and paid accounts. https://nclab.com/faq/ Have names and passwords

ready on Day 1 to make logging on a smooth process (small cards with this information can be

passed out to each student)

● Teacher Accounts: It is helpful to have two teacher accounts: one for learning the program and

maintaining progress as a teacher; and the other for demonstrating the program. This second

account will look like what the students encounter and can be cleared as needed for each class

that is taught.

● Progress monitoring: Students accounts associated with a teacher can be progress monitored

from the teacher’s NCLab desktop.

● The teacher textbook can be downloaded as a .pdf file from the Resources page

https://nclab.com/resources/

● The solution manual can be accessed by following this link:

https://docs.google.com/document/d/1iPAfL11RzLI353YDsDyeYGc-U0wR_iB81RrpJrdpn5M/edit

● YouTube videos: some schools block YouTube, so the demonstration videos may need to be

unblocked by an administrator to make them available to students

● Publishing: Students should have a way to share a link to their games with others, such as a

shared folder on a network drive; class or student wikis, web pages, blogs or email accounts;

commercial networks such as Google Drives or Edmodo; or public social media network such as

Facebook or Twitter.

Publishing to the NCLab Gallery: submit games to https://nclab.com/turtle-gallery-submit/

Student work can be viewed at: https://nclab.com/turtle-gallery/

SUGGESTED AGE RANGE FOR STUDENTS AND PREREQUISITES

Tina 1 is designed to teach students between ages 10-15. The younger students tend to progress more

slowly but can still be successful. Students at the middle school or early high school level generally

master the program with little difficulty. Students who have not been exposed to integers and

geometry concepts such as ordered pairs, translation and rotation, may need some background

preparation before starting some of the levels.

For students with no programming experience, NCLab recommended taking the Karel 1 and 2 courses

before taking the Tina course. The Karel courses use a simplified version of Python which is easier to

manage.

https://nclab.com/faq/
https://nclab.com/resources/
https://docs.google.com/document/d/1iPAfL11RzLI353YDsDyeYGc-U0wR_iB81RrpJrdpn5M/edit
https://nclab.com/turtle-gallery-submit/
https://nclab.com/turtle-gallery/

4

Students who are in 8th grade or higher will have been taught all the math prerequisites. Students in

earlier grades may need math mini-lessons as the course progresses. The math standards and skills are

addressed in each Section.

TIME REQUIRED AND SUGGESTIONS FOR COURSE DELIVERY

There are 40 levels or lessons in Tina 1, divided into 5 sections of 8 levels each. The following lessons

are written for each section, with notes on the specific skills addressed at each level within the section.

Students will naturally slow down as the coding becomes more complex. In general, the amount of time

required for the course is about 10 to 15 hours of computer time, including one to two hours for each

instructional level, and one hour for the art project level in each section. Here are some suggestions for

lesson delivery:

● As a camp or workshop that allows long stretches of computer time. Generally, students will

complete the Tina 1 course in four sessions of about 3 hours each, although younger or less

experienced students will need more time, whereas students who learn easily could complete it

in about half that time. Advanced students can experiment with designs, or continue on to Tina

2.

● As a self-paced course for independent study, for computer lab time, after school programs,

programming clubs, gifted and talented programs or home study. Students are more likely to

complete the course if they are encouraged and supported by adults, and if they have the

opportunity to publish and print their designs.

● As part of an elective computer programming class at the middle school or early high school

level. Tina 1 should be followed by Tina 2. Students who complete both courses will have been

introduced to all the basic tools of programming graphic design.

If taught as a class, time will be spent outside of the computer program to develop and enrich

understanding of the underlying geometry and algebra concepts, demonstrate real world

applications and share ideas. Students will also appreciate time to build designs on their own.

Teachers may break away from programming to teach or review math skills in preparation for a

particular Section. The following is a possible 5-day cycle of 50 minute classes for one Section:

Day 1: Introduce concepts and vocabulary (7 minutes)

 Watch and discuss YouTube video (8 minutes)

 Complete levels 1 and 2 (20 minutes – about 10 minutes each)

 Review Levels 1 and 2 as a class (6 minutes)

5

 Assist students with questions while others experiment with designs.

(Remaining time)

Day 2: Complete levels 3, 4 and 5 (36 minutes total – about 12 minutes each)

Review Levels 3, 4 and 5 as a class (9 minutes)

Assist students with questions while others experiment with designs.

(Remaining time)

Day 3: Complete levels 6 and 7 (30 minutes total – about 15 minutes each.)

Review Levels 6 and 7 as a class (9 minutes)

Assist students with questions while others experiment with designs.

(Remaining time)

Day 4: Level 8: Art Project

Review concepts and vocabulary learned (7 minutes)

Introduction: expectations and parameters for project. Distribute checklists (3

minutes)

Plan and Design (15 minutes)

Write and test programs (20 minutes) – note: file can be submitted for course

completion and then returned to for further design as a performance task.

Review progress and save files (5 minutes)

Day 5:

 Assessment: quiz and/or journal entries. (10 minutes)

 Complete Art Project as performance task. (30 minutes)

 Share designs (walk around gallery) (10 minutes)

Encourage students who finish quickly to take notes, deepen their understanding of the

concepts, and create designs. It is one thing to just complete a level; it is another to

truly understand, remember, and apply.

● As mini-lessons of about 20-30 minutes each, addressing one to two levels at a time. This might

be a good option for upper elementary and middle school where time is a premium. At this rate,

the course would take most of a quarter (about 8 weeks) to complete. However, spreading out

the lessons may be more successful at reaching students from a broader range of ability and

background, because the course is chunked into smaller segments with teacher and peer

support.

6

CROSS-CUTTING CONCEPTS: MATH AND ELA STANDARDS

Tina I teaches graphic design, and therefore requires a basic understanding of geometry. At the same

time, Tina itself will greatly enhance the teaching of geometry because students can see how geometry

affects design. By using variables, Tina also uses basic algebraic function concepts.

State Standards vary, but most fall along the lines of the Common Core Standards.

Geometry

Here is a link to the Common Core Geometry Standards progression from Kindergarten to 12th Grade:

http://www.corestandards.org/Math/Content/G/

It is helpful to refer to this progression when teaching Tina to a particular grade level. For example, 4th

grade students are learning about lines, rays, and angles; 5th grade students are introduced to the

Cartesian coordinate system; 6th grade students draw polygons in the coordinate system; 8th grade

students study the effects of rotation, reflection, translation, and dilation. Students in 8th grade will

have all the background knowledge they need to work independently. Students in earlier grades will

need some geometry instruction to prepare them for Tina. An introduction will suffice for most

students, as Tina is fairly simple to code. The specific background knowledge needed is referred to in

the lesson plans for each section.

Section Background knowledge required Standards that apply

1 LEVEL 1.1: x,y coordination plane (Cartesian plane);
ordered pairs; origin, x and y axes
LEVEL 1.1: scale and interval on a coordinate plane
LEVEL 1.2: line (line segments), rays and angles
LEVEL 1.5 angles in regular polygons, supplementary
angles, angles as divisions of 360 degrees.
LEVEL 1.7: Integers, using ordered pairs in Quadrants
II, III and IV of the coordinate plane

4.GA.1,2 and 3 (angles, attributes)
5.GA.1 (x,y coordinate plane)
5.GB.1,2 (attributes of regular
polygons)
6.G.A.1 composing and
decomposing shapes
6.G.A.3 shapes in the coordinate
plane
7.G.A.1 scaled drawings
8.G.A.* translations and rotations,
congruent and similar shapes

2 As above

3 As above

4 LEVEL 4.3: Decomposing angles 7.G.B.5 using angle relationships to
solve problems.

5 LEVEL 5.1: Non-linear shapes and patterns created by
the use of variables.

Algebra

http://www.corestandards.org/Math/Content/G/

7

Tina makes use of algebraic relationships to write code that is simple and effective. Students apply the

properties of operations, use variables as functions, generate patterns based on number relationships,

and use order of operations.

The K-5 link for Operations and Algebraic Thinking is

http://www.corestandards.org/Math/Content/OA/ (Operations and Algebraic Thinking)

From 6th grade onward, the study of operations and algebraic thinking is subdivided into different areas

of study.

In 6th and 7th grade, the standards focus on ratio and proportion:

http://www.corestandards.org/Math/Content/RP/

In 8th grade, functions:

http://www.corestandards.org/Math/Content/F/

6th through 8th grade, expressions and equations:

http://www.corestandards.org/Math/Content/EE/

As in geometry, students in grades earlier than 8th grade will need some background support in Algebra

to understand what they are doing in Tina.

Section Background knowledge required Standards that apply

1 Use parentheses in numeric expressions.
An brief introduction to rational/irrational numbers may
help students understand when to use the goto
command, and with the tangram project.

5.OA.A1
6.NS.C7 (rational numbers)
8.NS.A1, A2 (irrational numbers)

2 As above

3 As above

4 As above

5 Patterns and shapes generated by a given rule (in this
case, a command line).
Write simple expressions with more than one operation
Generate sequences of ordered pairs

Understand integers
Graphing points in all four quadrants of the coordinate
plane

4.OA.C.5 Generate and analyze
patterns.
5.OA.A1,2, B1

6.NS.C.6
6,NS.C.8

http://www.corestandards.org/Math/Content/OA/
http://www.corestandards.org/Math/Content/RP/
http://www.corestandards.org/Math/Content/F/
http://www.corestandards.org/Math/Content/EE/

8

Students will also develop good math process skills as they learn to write code. In fact, all of the

Common Core Standards for Mathematical Practices apply, so students may very well improve in any

regular math studies as a result.

SMP 1: Make sense of problems and persevere in solving them. Each lesson is presented as a problem

or puzzle to be solved. Students can test their programs instantly, as they go. This feedback encourages

them to correct errors and continue until the task is completely solved.

SMP 2: Reason abstractly and quantitatively. Students learn how to write logical command sequences,

including conditions and repeated routines (loops and nested loops)

SMP 3: Construct viable arguments and critique the reasoning of others. In the search for code that

meets or beats the criteria, students naturally engage in discussions about the best way to solve a

puzzle. They often help each other uncover errors. Class discussions and journals enhance this

communication.

SMP 4: Model with mathematics. Coding, by its very nature, is translating actions, conditions and goals

into defined terms and symbols, which in turn translates into tangible designs.

SMP 5: Use appropriate tools strategically. Students have to choose the most effective commands and

sequences needed to solve the problem. Subroutines (loops), conditions, and commands are selected to

create code that is efficient, robust, readable and flexible.

SMP 6: Attend to precision. Programs will not run correctly if there are any logical or syntax errors.

SMP 7: Look for and make use of structure. To solve a puzzle, students must break down a task into

logical steps.

SMP 8: Look for and express regularity in repeated reasoning. Patterns are the key to writing repeated

loops, nested loops and conditions.

English Language Arts W.x.10 Write routinely over extended time frames (time for research, reflection,

and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific

tasks, purposes, and audiences. In Tina, journaling and describing designs help cement learning and give

students practice in informational writing.

English Language Arts SL.x. Discussion and collaboration are key ingredients in solving problems,

applying learning and creating designs. In particular, students should be able to ask and answer specific

questions.

9

NEXT GENERATION SCIENCE STANDARDS (NGSS)

ETS1, 2, 3: Engineering Design

From the NGSS website:

The core idea of engineering design includes three component ideas:

A. Defining and delimiting engineering problems involves stating the problem to be solved as clearly as

possible in terms of criteria for success, and constraints or limits.

B. Designing solutions to engineering problems begins with generating a number of different possible

solutions, then evaluating potential solutions to see which ones best meet the criteria and constraints of

the problem.

C. Optimizing the design solution involves a process in which solutions are systematically tested and

refined and the final design is improved by trading off less important features for those that are more

important.

How Tina 1 fits this model:

● At the end of each Section, the final Level requires the design of an Art Project. This requires

programming and mathematical skills, especially when students are learning how to control the

outcome.

● The course sets criteria and constraints Students look for the best solutions with the simplest,

most efficient and robust code.

● Students test their designs, learn from failures, and optimize their code, just as they would in

real life engineering tasks.

● Once students develop some proficiency, they can apply their skills to an unlimited range of

projects.

To view the Engineering Design in the NGSS document in detail:

http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-

%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf

http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf
http://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf

10

VOCABULARY, LANGUAGE AND PROGRAM SUPPORTS

● Instruction: Text complexity (Lexile score) ranges from about 440 to 800L, suitable for 3rd to

4th grade upwards.

● YouTube videos: demonstrate steps learned in the lesson. Links are listed within the lessons.

● Text size can be adjusted for readability.

● Design viewer: Students can view their designs in the right hand block at any time, providing

instant visual feedback.

● Error message feedback: If the program contains errors, the line and error type are flagged with

comments.

● Vocabulary: words that are specific to programming, math terms, and any Tier II or III words

that students may encounter are listed and described under each Section in these lesson plans.

● Student Journal: a journal is provided for concept and vocabulary review, and reflections on

learning. It includes sketch pages to design programs while offline.

11

BACKGROUND-BUILDING AND SUPPORT ACTIVITIES

Art, Science, and Math are all rich in geometric patterns that can inspire design. Hands on activities in

any of these areas help students make sense of computer graphics and abstract lines of code.

Art projects:

 Op art drawings, tessellations and origami develop skills with shapes, lines and angles.

 Pottery wheels, lathes and drills can be used to create rotational shapes and shells.

 Woven, knitted, crocheted, tie-dyed, quilted and beaded designs demonstrate repeated

patterns in fabric arts.

Art appreciation: Geometry has been used throughout human history as a component of art.

 Mosaic patterns range from simple to complex, especially in later examples of Islamic art.

 Rules of composition, including the golden mean.

 Abstract art, especially art that is based on optical illusion.

Patterns in Science: Geometric patterns abound in nature: x-ray diffractions of atomic structures,

seashells, the rotating arms of distant galaxies.

Patterns in Engineering: Cloverleaf-shaped highway interchanges, gears.

Geometry and Algebra: Instruction and review of geometry and algebra concepts (see lesson plans for

specific skills).

Ruler and protractor work: physically drawing shapes, lines and angles. Specifically, learning the

different ways to divide up 360 degrees into equal parts.

Geometric manipulatives: tangrams, two and three-dimensional shapes, linking rods and connectors

such as K-nex, fraction block sets (circles, polygons, rods, tiles), all build physical and visual awareness of

geometry. Tesselations are examples of nested loops.

Realia. Collect items that show patterns and repeated patterns. Students can bring items to make a

tabletop or bulletin board display.

Examples

 Stamp sets (stamps have designs; designs can be stamped into a repeated pattern);

 Fabric items (braid, lace, knitted or woven patterns)

 Natural items such as seashells

 Manufactured items such as chains, bracelets, gears

12

 An oscilloscope or oscilloscope simulation app can be used to show wave patterns.

Student Journal Sharing. Journaling provides an opportunity to reflect on learning and deepen

understanding of concepts and procedures. It is a place to imagine new designs and programs. All of

this can be shared as partners, small groups or whole class.

● Hour of Code (https://code.org/learn): As a warm-up to Tina, students can benefit by

 exploring free Drag and Drop programming games found at Hour of Code.

DEPTH OF KNOWLEDGE

Most problems in the Tina 1 course have more than one possible solution given the parameters,

although there are less solutions that fit the number of lines required. The object of the lessons is to

write code that is clean and simple and to avoid redundancies that can lead to errors. As a result,

the Depth of Knowledge (DOK) during the instructional phase is 1 to 3. Using the creativity suite,

DOK 3 and 4 level problems can be created and solved.

BLOOM’S TAXONOMY

● Application and Analysis: Students must analyze the given parameters to come up with a

solution. Students immediately apply what they are learning at each stage by writing a program.

● Synthesis and Creation: Students can create their own publishable designs, bringing together all

the skills they have learned.

ENRICHMENT, REMEDIATION AND PROGRESS MONITORING

● Since the course is self-paced, students can move through the lessons based on their own rate

of learning.

● Students must unlock the next levels, so it is not possible to race through or “cherry pick” the

program without successfully completing each stage.

● Steps can be repeated at any time for review and reinforcement.

● Teachers should monitor and provide scaffolded support as needed. At some point, most

students will hit their own personal threshold level in which they aren’t immediately successful.

Point out the built-in hints and line prompts within the program. Follow up with discussions

about what they learned from these hints.

https://code.org/learn

13

● In a camp or workshop setting, it is important to build in physical breaks. Students tend to stay

longer than they should in front of the computer.

● In any setting, encourage opportunities to interact and discuss progress.

● Set design challenges for students, especially for those who go through the levels quickly.

ASSESSMENT

Assessment built into the program:

● Within each level, students get immediate feedback from the program. The design created by

their code is displayed to the right, and any syntax errors are noted in the dialogue box below

their code.

● Upon successful completion of a level, students will unlock the next level. Likewise, upon

successful completion of each section, students will receive a certificate and unlock the next

section.

● Teachers can monitor the progress of their students by clicking on the My School apple. This

opens a new window. Select Turtle-1 to Active Course.

Journals: A Student Journal is included in the course materials and can be used as a portfolio artifact.

Quizzes: Students can complete paper and pencil or online quizzes (in development).

14

Art projects as performance assessments: The final level in each section is an Art Project, in which

students write a program that creates a geometric design based on the skills learned in that section. In

the Lesson Plans, a printable assignment is included at the end of each section that can be used to score

the designs.

Student Feedback: At the end of each level, students are asked to evaluate the level of difficulty by

clicking on an EASY, MEDIUM or HARD button. Students can add specific comments. This gives the

NCLab designers valuable feedback for improving the games.

Here is a possible grading scheme that includes several methods of assessment:

SUGGESTED GRADING SCHEME FOR TINA 1

Type of Assessment Points Number Total Points

Section Completion 50 5 250

End of Section Art Project 50 5 250

Journal Responses 50 5 250

TOTAL POINTS 750

15

LESSONS

Note: The best way to prepare for these lessons is to do them as a user either ahead of time

or alongside the students. Answer keys for all levels are available at

https://docs.google.com/document/d/1iPAfL11RzLI353YDsDyeYGc-U0wR_iB81RrpJrdpn5M/edit

INTRODUCTION TO THE COURSE (ABOUT 20-30 MINUTES)

In the very first session, allow for time to log in the students and show them where the course is located

on the desktop. Demonstrate the log in steps and first lesson on a computer (for larger classes, attached

to a projector or Smartboard if available).

Modeling How to Access the Course:

Model how to log in, select the course from the Desktop and navigate screens with initial level, using

Smartboard or projector. Have the students complete each step as you go along.

Log in to account

https://desktop.nclab.com/.

Select “Courses” (doubleclick)

Select Tina Turtle and then Tina 1.

Select the Section (1-Basics) and

Level (1.1. -)

Note that only one section and level

are available. The rest are locked

until the section or level is

successfully completed.

https://docs.google.com/document/d/1iPAfL11RzLI353YDsDyeYGc-U0wR_iB81RrpJrdpn5M/edit
https://desktop.nclab.com/

16

SECTION 1 BASICS: LEVELS 1.1-1.8

Objectives: Students will be able to write Python code that directs the turtle icon. In Section 1, students

will learn the basic parameters, movement and turning commands to draw lines, angles and simple

figures in an x,y plane.

Vocabulary:

Commands (these are on the printable cards), presented in order of appearance in the levels:

 tina.go(n), where n = the number of steps.

 This command moves the turtle forward, creating a line on the graph

 It can also be written as

 tina.forward(n)

 tina.fd(n)

 tina.left(n), where n = the number of degrees to turn.

tina.right(n), where n = the number of degrees to turn.

These commands will turn the turtle by the number of degrees indicated.

Left can also be written as tina.lt(n), and right as tina.rt(n)

tina.up(); tina.down()

Pen up (so that Tina moves forward without drawing a line) and pen down (to resume

drawing with forward movement):

tina.width(n), sets the line width, where n is the line width in units.

tina.hide()hides the turtle so that it doesn’t show in the final drawing

tina.back(d), where d is the distance Tina backs up. Tina will not draw when backing up.

 tina.extrude(n), where n is the width to be extruded. Extrude sets the width of the

 shape in the z axis so that the design can be printed. Extrude also hides Tina, so the

 hide command does not need to be used if the extrude command is used.

tina.goto(x,y). Tina will draw a line to a specified coordinate pair. This is a useful

 command for angles that are not integers or decimals to the nearest tenth. It should

 only be used if necessary.

17

Time required:

Once students have learned how to log into the Desktop and select their course, most will complete

Section 1 in about 90 minutes, excluding the art project.

Background knowledge/Introductory Set/Purpose:

● Using the following link, show students an overview of Tina 1 (which starts with Basics and ends

with Variables) and Tina 2 (which starts with Functions and ends with Rotational Solids and

Shells). Here is the link to the course overview:

https://nclab.com/turtle-course-details/

 Share a couple of examples of design in art and nature, using the Wikipedia links suggested in

Background or selecting from the many pictures and videos available on the Internet.

 Purpose: Section 1 (Levels 1.1-1.8) introduces basic commands and parameters used in Tina.

This information is on the help cards for Section 1, which can be introduced now, reviewed as

students work through the Levels, and summarized at the end of the Section.

 Math background: students may need extra instruction depending on their background in math.

This can be explicitly taught, reviewed, or assigned as determined by the teacher. Math

concepts used in Section 1 include:

LEVEL 1.1: x,y coordination plane (Cartesian plane); ordered pairs; origin, x and y axes

LEVEL 1.1: scale and interval on a graph

LEVEL 1.2: line (line segments), rays and angles

LEVEL 1.5 angles in regular polygons, supplementary angles, angles as divisions of 360 degrees.

LEVEL 1.7: Integers, using ordered pairs in Quadrants II, III and IV of the coordinate plane

Direct instruction:

As previously recommended, it is helpful to have two teacher accounts: one for learning the course

ahead of the students, and one for modeling steps to the students. This second account is useful for

instruction as it will show the screens as they appear for the first time to a user and can be hard reset as

needed.

Since this is a self-paced course, the amount of modeling should be kept to a minimum. It is helpful to

introduce each Section, and also to pause the progress of the class if observation shows the need for a

class-wide demonstration or lesson. Pause points are suggested in each level. YouTube videos are at

the beginning of Levels 1.2 and 1.4.

Since this is the first Section, do Level 1.1 together as a class to give students a feel for how the program

works.

https://nclab.com/turtle-course-details/

18

Help cards: these can be printed, distributed and discussed.

Tina’s default positions and settings in an x,y coordinate plane

(Cartesian plane)

Tina starts at the origin (0,0)

Tina facing east (positive x axis)

Each grid space is 10 units

Tina’s default color is BLUE

The x axis is red the y axis is green, and the z axis is blue. In Tina 1, students

work within the 2-dimensional xy plane, and only extrude into the z axis

when creating a printable object using the extrude command.

Basic commands (Levels 1.1 to 1.4)

Moving forward: tina.go(d), where d is the distance. Remember:

The grid interval is 10 units, so to move one grid space, type

tina.go(10)

Turning left or right: tina.left(a) or tina.right(a), where a is

the number of degrees to be turned.

Color: tina.color(COLOR), where COLOR is one of the many colors

stored in the program language. This can be a normal name like RED, or

a defined name such as WOOD. Colors are all capital letters.

19

Basic commands (Levels 1.5 to 1.7)

Pen up (so that Tina moves forward without drawing a line) and pen down (to

resume drawing with forward movement): tina.up(); tina.down()

Line width: tina.width(n), where n is the line width in units.

Hiding the turtle so that it doesn’t show in the final drawing: tina.hide()

Backing up: tina.back(d), where d is the distance Tina backs up. Tina will not

draw when backing up.

Extruding the design to form a 3D printable shape: tina.extrude(n),

where n is the width to be extruded. Extrude also hides Tina, so the hide

command does not need to be used if the extrude command is used.

Go to a coordinate pair: tina.goto(x,y). Tina will draw a line to a specified

coordinate pair. This is a useful command for angles that are not integers or

decimals to the nearest tenth. It should only be used if necessary.

 Saving and Sharing (Level 1.8)

To make a 3D printable file, remember to extrude the design using

tina.extrude(n), where n is the width to be extruded. -

To save, go to File -> Save STL to NCLab and save the file.

To publish, open the File Manage (“My Files” icon):

 Right-click on the STL file.

 Choose Publish to the web.

 Select the first option “Anyone can view”.

 Press CTRL-C to copy the file to the clipboard.

 Visit http://nclab.com/turtle-gallery to share the design.

 Designs can also be published on Facebook, Twitter, G+ or a location
designated by your teacher or school ________________________.

http://nclab.com/turtle-gallery

20

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

Levels 1.1-1.8

1.1 Hi There!

In this simple introduction, students answer the question by typing in an integer that represents the grid

spacing.

A clue is given in the text: “The grid spacing is 10 steps”.

Once the integer is entered into the command line, the student is prompted to submit the completed

response by pressing the green button on the lower right hand corner of the screen.

 If correct, this screen will

appear.

The green message box lists the

successful tasks, and may

contain additional pointers.

It will also ask students to rate

the level as too easy, just right,

or too hard and provide any

comments. This feedback helps

the program developers make improvements.

1.2 Turtle Pond

In Turtle Pond, the student is prompted to watch the embedded video, which teaches basic commands.

The video can be viewed on YouTube at

https://www.youtube.com/watch?v=VFGfx9ovCCM&feature=youtu.be. If students do not have access

to You Tube, the video can be shown to the class.

https://www.youtube.com/watch?v=VFGfx9ovCCM&feature=youtu.be

21

The first command to be

learned is tina.go(n), which

moves the turtle in a straight

line by the number of steps

indicated in the parentheses.

While moving forward, the

turtle is drawing a line

(reminder: each grid square = ten steps).

Students practice this

command by drawing a line

that will fill the pond.

A model of what the design

should look like is included in

the upper left pane, along with

any specific instructions such as

the commands to be used and

the number of lines in the

program.

 After filling in the command with the number of steps, students can preview the results by pressing the

green play button at the bottom of the screen.

 If the results are satisfactory, they can submit their program to check the solution and move on to the

next level.

1.3 Turtle Race

In this level, students learn to use the left and right commands.

The level starts by teaching

how to write the turning

commands, including the need

to specify the angle in degrees.

22

Students practice the turns by writing a program to guide Tina through a racetrack, using the go, left and

right commands.

Commands:

go(),left(),right()

Number of lines: 5

Remind students to run the

program using the green arrow

to see if it works before

submitting.

1.4 Missing Letter

Before starting this level, students view a second video on basic commands. This video can be viewed at

https://www.youtube.com/watch?v=2n5JfOyYfok&feature=youtu.be

The video includes an explanation of comment lines (text strings) that can be inserted anywhere in the

program as a heading, explanation, or hint for that section of the program. It also explains how to use

xy coordinate pairs, and how to reorient Tina to a specific angle.

Level 1.4 starts by teaching how to use the color command tina.color(COLOR)

The program recognizes many

colors. Students will know if

they have typed a valid color

because the text will change to

blue.

Color commands are typed with

all capital letters.

Next, 1.4 teaches about the tina.up() pen up and tina.down() pen down commands.

Tina will move without drawing

when the pen is up, and will

draw as she moves when the

pen is down. This enables her

to create spaces, or to move to

another location before she

resumes drawing.

https://www.youtube.com/watch?v=2n5JfOyYfok&feature=youtu.be

23

Students then practice using the color command to draw the letter I in TINA using the color TURQUOISE.

The other letters have already

been created.

Commands:

go(), left(), up(),

down()

Number of lines: 6

1.5 Tina’s Place

In this level, students learn how to specify the line width using the tina.width(X) command.

The width X can be any number

between 0.1 and 10.

Students practice the command by creating a brown roof with a width of 2 units for Tina’s house.

Remember, the directions in the upper left box describe which steps need to be included in the

program. At the end of this

program, students practice the

tina.hide() command to

make the turtle disappear when

the drawing is rendered.

Commands: go(),

right(), hide()

Number of lines: 6

24

1.6 Peace Sign

1.6 begins by teaching students how to use the command back() to get Tina to move backward.

This is a useful command

because Tina will not draw

when moving backward, so it

can be used to reposition her

without using the pen up and

pen down commands.

Students then learn the command extrude(n) which turns the object into a 3D printable object.

n is the thickness (3rd

dimension, z-axis) of the

extrusion.

It is recommended to keep the

thickness close to the value of

the width of the line.

The extrude() command

automatically hides Tina, so

there is no need to add a hide command line.

Students apply what they have learned to complete the peace sign.

Commands: go(), left(),

right(), back()

Number of lines: 14

Students may approach the task

differently in their choice of

turns, forward and backward

movements. Suggest that they

compare their programs.

Once the peace sign is successfully completed, student receive a note explaining how to save their files

as .STL printable files. See Level 1.8 for a copy of this note. Directions are also on the 4th help card.

25

1.7 Deathly Hallows

In this level, students learn how to construct slopes.

The first screen is an example of a failed program. If you are guiding students through the lessons, or

they are journaling, ask them why this program fails.

The failure is explained on the second screen.

Both the angle and the length of

the line would be very difficult

to specify as a number. The

commands used so far would

produce inaccurate results.

The command goto(X, Y) will draw the line to the specified X, Y coordinate.

This avoids problems with line

length and turning angle.

26

Students practice the new command by completing the Deathly Hallows pendant.

Both the triangle and the

bisecting line must be drawn.

The instructions specify line

width, extrusion height, and

color; and Tina’s starting

position

Commands: go(), left(),

right(), back(),

goto()

Number of lines: 12

Have students carefully compare their rendered pendant with the example. They can rotate it to check.

Are the angles and line lengths the same?

Remind students to only use the goto() command when necessary. They should specify line lengths

and angles whenever possible.

1.8 Art Project

In this level, students will

design their own tangram

pendant. The photo at the right

shows an example of a

completed pendant.

The second screen shows several tangrams and encourages students to look for images on line.

27

This project is the final level for

Section 1 and can be used as an

assessment.

Commands: go(), left(),

right(), back(),

up(), down(), goto()

Number of lines: will vary with

design.

Since the lengths of the sides are not integers (see the note

below), students may need to use the goto command in many

cases.

Background on tangrams:

The tangram consists of seven pieces as described below:

Choosing a unit of measurement so that the seven pieces can be

assembled to form a square of side one unit and having area one

square unit, the seven pieces are:

 2 large right triangles (hypotenuse , sides , area)

 1 medium right triangle (hypotenuse , sides , area)

 2 small right triangles (hypotenuse , sides , area)

 1 square (sides , area)

 1 parallelogram (sides of and , area)

If students scale up these relationships so that the hypotenuse of the large triangle is 40 units, they

should be able to place the shapes using the go, left, right and goto commands without

much difficulty. This makes some of the sides integer lengths (lengths of the two equal sides of the

medium triangle, the hypotenuse of the smallest triangles, the longest side of the parallelogram, the

diagonal of the square) equal to 20 units. The interior angles are combinations of 45, 90 and 135

degrees.

Students will benefit from playing with physical tangram sets, or virtual ones such as the free tangram

puzzles on abcya.com, to get a feel for these shape relationships.

https://en.wikipedia.org/wiki/Right_Angle_Triangle
https://en.wikipedia.org/wiki/Square_(geometry)
https://en.wikipedia.org/wiki/Parallelogram

28

To simulate a true design or engineering project, have students draw and annotate their design on

squared paper. This will help them determine the line lengths and turns, and which coordinates to use

in the goto command, and will serve as a written record of their work.

You may want to modify the assignment for younger or less experienced students. The program will

accept simpler designs than full tangrams as Art Projects.

Saving and sharing the design:

Once students have completed the design, they can

export it as an STF file for printing, using the pull-down

menu above the drawing on the right hand side. Here are

the instructions as shown in the program. Students will

see this window once they have submitted their design.

Project differentiation:

Since it is composed of several adjoining shapes, a tangram takes many lines of programming and thus

an investment of time to complete. This is a chance for students to exercise all the skills they have

learned so far. They will appreciate subsequent lessons more after trying to figure out how to build all

these shapes on the coordinate plane.

Suggested questions for post-session discussion (students can use their journals to write down their

ideas and responses) (10-20 minutes):

When you made your final design, did you use goto()? Why did you decide to use it instead of a

combination of go(), left() and right()?

How do you decide what angle to use with the left() or right() commands?

How many lines of programming did your project need to create the shapes?

What would you create with Tina?

Assessment:

Within the program itself, students receive a White Belt of First Degree certificate upon successful

completion of Section 1. The certificate can be printed, emailed or shared on social media.

Students Journal entries can be used as assessment.

The Art Project can be used as a performance task or portfolio artifact. Here is a possible 50-point

assignment card:

 Section 1 Assignment

29

END OF SECTION 1: ART PROJECT (50 POINTS)

Objective: Create and publish a design based on tangrams.

Planning (15 points): After you have decided on a design, draw out the shapes on grid paper or in your

journal.

 Describe the shapes. What commands will be needed to draw them? Name each shape (for

example Purple Triangle 1) and describe the color, starting position, line lengths, turning

angles, and coordinates for the goto command if needed.

 Write out the order in which you will program the shapes. Where do the shapes attach to

each other? When will the up, down, and back commands be useful?

Writing the code (25 points): Write the program.

 Before you write the code for each shape, write a comment line that names and describes the

shape.

 Write the code and test as you go..

● Include examples of all the commands learned in Section 1:

go(), left(), right(), back(), up(), down() and goto()

Saving the file, sharing and publishing (10 points)

● Publish the design to your folder. Inform someone else about the game by providing the link

on ____________________________________, or by email.

Support:

30

For students who need extra support:

● Show them the next step needed.

● Use the printable help cards.

● Partner them with a more experienced student.

● Decrease the number of shapes required for the Art Project.

Enrichment: Creative Suite

For students who are ready to create their own designs, Turtle Tina is available in Creative Suite.

● Students can create their own files.

● Creative Suite can be accessed by doubleclicking the Creative Suite button on the left side of the

NCLab desktop, or from the pullup menu at the bottom of the screen.

● On the Creative Suite menu, click on Programming, then Turtle Tina.

● The opening screen includes a YouTube video and sample code. Students can run the code and

experiment with it.

● The video and a List of Commands are always available from the Help menu.

● To create a new file, select New from the File menu.

● The file is saved in the same way as the Art Project, to the NcLab Folder.

31

SECTION 2 LOOPS I: LEVELS 2.1-2.8

Objectives: In this section, students learn to use loops to draw regular polygons, circles, and stars.

Vocabulary:

Loop: a set of repeated commands that is done a certain number of times. The first line states

the number of times. The body of the loop is the set of commands that will be repeated.

For-Loop: In Tina, a specific type of loop is called a For-Loop, because it begins with the phrase

For i in range()

An example of how to write a loop is given at the beginning of Level 2.1.

Prerequisite skills: Completion of Section 1, and an understanding of the basic commands learned in

that section. Since Section 2 builds shapes based on repeated patterns, it helps to have an

understanding of symmetry and regular polygons.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in two or three hours, excepting the art project.

Background knowledge/Introductory Set/Purpose:

Use photographs such as those suggested in Background Activities to demonstrate repeated patterns in

science, art, and nature.

Patterns that are repeated can be written as loops. This has many benefits:

It is easy to change the number of times a pattern is to be repeated.

It is easy to test and fix code within the loop. You are only editing one line of code rather than

several of the same lines if the loop wasn’t created.

Direct Instruction and Modeling:

2.1 is described in detail below. The video can be played to the class.

Instructional screens can be shown on a projector or Smartboard (remind students to refer to these for

help).

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

32

Help cards: these can be printed, distributed and discussed.

Writing a For loop to repeat a set of commands:

For i in range(4): range(4) means that the following lines will be

 repeated four times.

 Note that the first line ends with a colon.

The next two lines form the body of the loop.

 tina.go(50) These are the commands that will be repeated 4

 times.

 tina.left(90) The body commands must be indented 2 spaces

 from the first line.

The complete set of commands look like this:

For i in range(4):

 tina.go(50)

 tina.left(90)

33

Self-paced Instruction: Levels 2.1-2.8

2.1 Triangle

Triangle starts with a You Tube video explaining how to use loops. The video can be viewed

from within the program or by following this link:

http://youtu.be/sFiTiTVJR8E

The next screen describes a problem with

writing repeated commands.

In order to make a square, Tina repeats

the same 2-step sequence of moving

forward and turning 90 degrees four

times.

We want our programs to be efficient.

Long programs are more error prone and

difficult to manage.

Instead, we can write a repeat loop that will tell Tina to do the sequence 4 times.

Students who have learned Tina will

remember the Repeat command. In Tina, the

command looks somewhat different.

The first command line is written as:

For i in range(4): range(4) means that the following lines will be repeated four times.

 Note that the first line ends with a colon.

The next two lines form the body of the loop.

 tina.go(50) These are the commands that will be repeated 4 times.

 tina.left(90) The body commands must be indented 2 spaces from the first line.

Stress the importance of syntax to the students. The program will not recognize the loop without the

colon on the first line, and the indentations on the body text.

Students practice creating a loop to draw a triangle.

http://youtu.be/sFiTiTVJR8E

34

The geometry and steps are

explained in the upper left hand

box, along with what the

drawing should look like when

done.

Number of lines: 3

Commands: go(), left()

When done, students will see this comment that

reviews the components of the loop.

2.2 Square

Students practice writing loops, this time for a square turned 45 degrees.

Tina should end up in the origin

position facing east.

Number of lines: 5

Commands: go(), left(),

right()

35

2.3 Pentagon

Students practice making loops

by drawing a pentagon. The

width and color are specified.

This time, students write the

entire loop themselves.

Number of lines: 5

Commands: go(), left()

If needed, remind students that the angles can be computed by dividing 360 degrees by the number of

angles.

2.4 Hexagon

Students practice making loops by drawing a hexagon. The width and color are also specified.

As in 2.3, students write the

entire loop themselves.

Number of lines: 5

Commands: go(), left()

2.5 Octagon

Students practice making loops

by drawing an octagon. The

width and color are specified.

As in 2.3, students write the

entire loop themselves.

Number of lines: 6

Commands: go(), left()

36

2.6 Circle

Students practice making loops by drawing a circle. The color is specified.

As in 2.3, students write the

entire loop themselves.

Number of lines: 5

Commands: go(), left()

In this case, the “circle” is a

sixty-sided polygon. This is how

programs actually draw circles:

the more sides, the smoother

the circle.

2.7 Star

Students practice making loops by drawing a star. The color is specified.

As in 2.3, students write the

entire loop themselves.

Number of lines: 6

Commands: go(), left()

Note that turning angle is the supplementary angle (144 degrees) to the angle formed by the rays that

make the star’s points (36 degrees).

37

2.8 Art Project

Students will create a pendant as their project for Section 2. Several screens show examples that can be

created.

The project requires at least

one loop.

The figure must also be

extruded in order to print.

The number of lines and

commands used will vary.

Students will see this message:

Make sure to visit http://nclab.com/turtle-designs to share your design!

38

The next screen summarizes the main

points which have been learned in

Section 2.

After completing this section, students

earn a Yellow Belt of First Degree which

they can print or share on social media.

Possible questions for post-session discussion:

What commands are used for all of these figures? (go, left)

How do you decide what angle to turn? (Divide 360 by the number of turns)

What happens if you change the number of times i is repeated (the range)?

What happens if you change the degrees turned even slightly?

Assessment:

Students will receive a printable “Yellow Belt” certificate upon completion of Section 2. See Assessment

section for journal and project ideas.

Students Journal entries can be used as assessment.

The Art Project can be used as a performance task or portfolio artifact. Here is a possible 50-point

assignment card:

39

Section 2 Art Project

SECTION 2 ART PROJECT: CREATE A PENDANT (50 POINTS)

Objective: Create and publish a pendant design in Tina Turtle.

Planning (15 points): After you have decided on a design, draw out the shapes on grid paper or in your

journal.

 Describe the shapes. What commands will be needed to draw them? Name each shape (for

example, Gold Star) and describe the color, starting position, line lengths, turning angles, and

coordinates for the goto command if needed.

 Write out the order in which you will program the shapes and lines in the pendant design.

Where do these components attach to each other? When will the up, down, and back

commands be useful?

Writing the code (25 points): Write the program.

 Before you write the code for each shape, write a comment line that names and describes the

shape.

 Write the code and test as you go.

 Use at least For one loop in your design, including the beginning line and the body of the loop.

● Use some or all of the commands learned in Section 1:

go(), left(), right(), back(), up(), down() and goto()

Saving the file, sharing and publishing (10 points)

● Publish the design to your folder. Inform someone else about the game by providing the link

on ____________________________________, or by email.

40

SECTION 3 LOOPS II: LEVELS 3.1-3.8

Objectives: In this section, students use For loops to build more complex objects, including linear and

rotated patterns.

Vocabulary: This is a good time to review some of the terms used in programming.

Algorithm: a series of logical steps that leads to the solution of a task. Students may be familiar

with algorithms used in operations such as subtraction and long division.

Logical error: a mistake in an algorithm. Planning helps reduce the number of errors.

Computer Program: An algorithm written using a programming language.

Syntax: the way a command line is written.

Syntax error: a mistake in spelling, operators, indentations, spaces

Time required:

Time required will vary based on student ability and experience. Most students will complete this

section in two hours.

Prerequisite skills: Completion of Section 2.

Background knowledge/Introductory Set/Purpose:

Why do we make patterns? For real life examples, have students look for objects that are made up of

repeated patterns (examples: a length of chain, a basket, a sweater). In programming, we look for

repeated patterns when building complex objects, so that our code is simple, manageable and

consistent.

Purpose: Section 3 (Levels 3.1-3.8) teaches how to build more complex shapes than the simple polygons

of Section 2.

Direct Instruction and Modeling:

Show the videos in 3.1 on a projector. Discuss any questions that arise. http://youtu.be/sFiTiTVJR8E

Model or guide the first lesson (3.1), based on student needs. Otherwise, there are no new commands

to be learned in this section. Additional instruction may be needed, and this is specifically addressed in

each level.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

http://youtu.be/sFiTiTVJR8E

41

Self-paced Instruction: Levels 3.1-3.7

3.1 Staircase

Staircase begins by showing the For-Loops video again as a refresher. The video can be viewed at

http://youtu.be/sFiTiTVJR8E

After picking a color, students create a staircase using a For-Loop.

Reminder: colors are all-caps.

Number of lines: 6

Commands: go(), left(),

right()

Reminder: For-Loop

automatically indents the body

text if the syntax is correctly

written. The most common

mistake is to forget the colon.

If it is there, the indent will show up.

3.2 Saw

Students create a sawtooth pattern using a For-Loop.

Students can pick any color.

The pattern’s center point is

the origin, so the program

starts by backing up Tina 90

spaces.

To start the pattern, Tina is

turned 60 degrees to the right.

Number of lines: 8

Commands: go(), left(), right()

There are a number of ways to turn Tina as she is drawing the sawtooth. Have students compare

solutions. Did they end up with Tina in the same orientation as the example shown in the upper left?

Which solution is the most elegant (simple, effective and easy to understand)?

http://youtu.be/sFiTiTVJR8E

42

3.3 Battlement

Students practice creating a For-Loop to build a battlement. The loop contains several commands.

Encourage students to try

different color names: for

example, fruits or metals. The

Python library is quite

extensive!

Ask them: why do you think we

started with Tina going 20 steps

before beginning the loop? (We

want her to end the pattern in a

particular position)

Number of lines: 11

Commands: go(), left(), right()

If you have access to an oscilloscope, it might be interesting to show students both the sawtooth and

square wave patterns that they have just created. Ask them if they can hear the shapes.

3.4 Swiss Cross

Students practice writing a multi-step For-Loop.

It is fun to see the results of

wrong programing: the shapes

can be quite interesting! For

students who visualize the

geometry and solve the

problem quickly, suggest that

they play with the code to see

what happens. Mistakes lead

to creativity!

Number of lines: 8

Commands: go(), left(), right()

43

3.5 Dandelion

Students practice the For Loop with a large number of repetitions (60).

For students who do not know

the term, here is the definition

of abscissa:

Abscissa: the perpendicular

distance of a point from the

vertical axis. Usually this is the

horizontal coordinate of a point

in a two-dimensional

rectangular Cartesian

coordinate system.

Students can also think of each petal as a ray starting from the origin.

The program itself is quite simple, but it has a lot of iterations and will take longer to run.

This time, there are fewer hints. Students count the interval themselves (20). They can also figure out

the degrees to turn by dividing 360 by 60.

Tina needs to back up before drawing the next abscissa.

Number of lines: 6

Commands: go(), left(), back()

3.6 Windmill

Students practice the For Loop by drawing a windmill.

Encourage students to analyze

the shape and explain their

thinking. This can be done as a

discussion (pair-share, small

group, whole class) and/or as a

written explanation. For

example:

“The windmill is made up of

eight rectangles. Tina needs to

draw a rectangle, back up and

44

turn to get ready to draw the next rectangle. There are eight rectangles in all, so she needs to turn

360/8 or 135 degrees.”

Some students might notice that there are repeated patterns within the loop. Nested loops are learned

in later sections.

Number of lines: 12

Commands: go(), left(), back()

3.7 Pinwheel

Students practice the For Loop by drawing a pinwheel.

Questions for students:

What type of triangle is being

repeated?

 Isoceles (2 equal sides)

 Right angle (1 right angle)

How many degrees are in the

other two angles?

 They each turn 45 degrees.

Students can practice writing and solving this as an algebraic equation. 2(a) = 180 – 90 → a =(180-

90)/2 → a=90/2 → a=45

Why are we using the goto command instead of specifying the distance?

 The actual distance is not an integer or simple decimal (in this case, it is 42.4264068712).

 The goto command has the additional benefit of returning Tina to the origin each time.

How do we figure out the angle to turn Tina to make the next triangle?

 By now, students should recognize that the turn angle to the next triangle is based on 360/n, where

n = the number of objects, in this case 8. If turning to the right, the angle will be 360/8 = 45 degrees.

If turning to the left, the angle will be the supplement, or 135 degrees.

Number of lines: 8

Commands: go(), goto(), left()

45

3.8 Art Project

Students create a 3D shape based on a repeated shape, as they have learned in Section 3. The shape

should be extruded so that it is printable. Encourage students to visit the Turtle Gallery and submit their

own drawings for publication.

The color, width and extrude

lines are already set up.

Students should draw some

designs on grid paper first.

Once the object is created and

saved to a file, encourage

students to play with the

attributes (color, width,

extrude, angles, line lengths)

and see how the shape changes.

After submitting the design, students will

see a review of the new ideas they have

learned on the next screen.

They will also earn a yellow belt of

second degree, which can be printed,

saved, emailed or shared.

Questions for post-session discussion:

What are the benefits of writing loops into programs?

Review: why do we use the back()and goto() commands?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. Students will receive a printable “Yellow Belt of Second Degree” certificate upon completion

of Section 3. See Assessment section for journal and project ideas.

Students Journal entries can be used as assessment.

The Art Project can be used as a performance task or portfolio artifact. Here is a possible 50-point

assignment card:

46

END OF SECTION 3: ART PROJECT (50 POINTS)

Objective: Create and publish a design made of repeated shapes and patterns in Tina Turtle.

Planning (15 points): After you have decided on a design, draw out the shapes on grid paper or in your

journal.

 Describe the design. What commands will be needed? Name the object or pattern that you

are designing.

 Looking at the design, decide which commands will be used. Will you need the back()

command to start the next part of the pattern? Where will you use goto() instead of

go()?

 If your design is composed of more than one repeated shape or pattern, write out the order in

which you will place them in the program. The color, width and extrude program lines

are already set up. Include the values that you use for each one in your design notes.

Writing the code (25 points): Write the program.

 Remember to include comment lines that describe what your program is doing.

 Write the code and test as you go.

 Use at least one For loop in your design, including the beginning line and the body of the loop.

● Use some or all of the commands learned in Section 1 and 2:

go(), left(), right(), back(), up(), down() and goto()

Saving the file, sharing and publishing (10 points)

● Publish the design to your folder. Inform someone else about the game by providing the link

on ____________________________________, or by email.

47

SECTION 4 NESTED LOOPS: LEVELS 4.1-4.8

Objectives: In this section, students learn to create nested For loops, or repeated patterns within

repeated patterns.

Vocabulary:

Nested loops: a nested loop is a repeated pattern or loop, that is part of another repeated pattern, or

loop. For example: if I want to make a row of 10 triangles, I can write a loop for to make a triangle, and

nest it inside a loop that will draw that triangle ten times in a row.

Time required: Time required will vary based on student ability and experience. Most students will

complete this section in about 2 hours, with another hour for the Art Project.

Prerequisite skills:

Completion of Section 3. Review geometry and algebra concepts as needed.

Background knowledge/Introductory Set/Purpose:

Look at examples of patterns within patterns (such as chains, braids, tessellations, knitted patterns,

shells, etc.). Each of these can be thought of as nested loops. A set of instructions creates a pattern,

and then this pattern is used to build another patter.

Purpose: Section 4 (Levels 4.1-4.7) introduces writing nested For loops.

Direct Instruction and Modeling:

Show the video in 4.1 that explains how to write a nested loop.

http://youtu.be/2QcdvLgXmbI

Model how to type the nested loop in the Level 4.1 lesson, with special attention to the indentations.

Additional suggestions for instruction and activities are included in several levels.

 Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

http://youtu.be/2QcdvLgXmbI

48

Help card for Section 4: Nested Loops

 Writing Nested For Loops (Example from 4.1)

for i in range(6): repeat 6 times, one for each triangle

 for j in range(3): repeat 3 times to make the triangle.

 The j loop must be indented 2 spaces

 because it is part of the for i loop

 tina.go(40) body of the j loop

 tina.left(120) indent two more spaces (4 total) to show

 that these lines are part of the j loop

 tina.left(60) This left turn is part of the i loop, so it is

 only indented two spaces. It will repeat the

 triangle created by j around the origin every

 60 degrees.

49

Self-paced Instruction: Levels 4.1-4.7 (All previous commands may be needed but not necessarily

listed under each lesson. Defined objects are listed)

4.1 Window

4.1 starts with a YouTube video on nested loops, which can be watched from within the program or by

following this link:

 http://youtu.be/2QcdvLgXmbI

This video should whet the students’ appetites for playing with the patterns to generate more complex

ones. In this Section, students will make all of the shapes shown in the video.

A demonstration on the next two screens shows Tina creating a hexagon made of triangles rotated

about the origin. The repeat loop for created the triangle is nested inside the repeat loop that

reproduces the triangle. Each loop is identified by a different letter: the inner loop is j, the outer loop is

i.

Students then practice writing nested loops by creating a window made of four squares.

Students write the code for the

two loops without prompts.

Number of lines: 7

Commands: go(), left()

http://youtu.be/2QcdvLgXmbI

50

4.2 Mosaic I

Students practice writing nested loops, this time with a hexagon repeated six times.

Number of lines: 7

Commands: go(), left()

Here is a hands-on activity that

could go along with nested

loops:

 Use one type of pattern

block tiles and create a

repeated pattern.

 Measure angles on the

shapes and relate these angles to the ones they are writing in the program.

4.3 Mosaic II

Students practice writing nested loops, this time with an octagon repeated eight times.

Number of lines: 7

Commands: go(), left()

As in 4.2, this shape can be

compared to one built with

pattern blocks.

51

4.4 Mosaic III

Students practice writing nested loops, this time with a dodecahedron repeated twelve times.

Number of lines: 7

Commands: go(), left()

As in 4.2, this shape can be

compared to one built with

pattern blocks.

Due to the number of

computations, this program

takes a little longer to run.

4.5 Sunflower

Students practice writing nested loops by drawing a sunflower figure composed of triangles.

Number of lines: 9

Commands: go(), left(),

right()

The edge length (20) and angles

(30, 60, 120) are specified in the

instructions.

Hint: think in a

counterclockwise direction.

Where would the next triangle

start?

52

4.6 Gear

Students practice writing

nested loops by drawing a gear

figure.

Number of lines: 9

Commands: go(),

left(), right()

Edge length: 10

Angles used: 90, 165, 75

Math Challenge: how are the angles 165 and 75 derived?

 There are 12 partial squares in the figure.

 360 degrees/12=30 degrees.

 Each partial square is rotated 30 degrees from the previous one, but the starting point is

different.

 We split the rotation into two segments, because Tina has to move an interval of 10 along the

first direction, and then rotate to start the next partial square.

o 180-165=15 degrees to the right

o 90-75=15 degrees to the right

o Tina needs to rotate 15+15=30 degrees to start the next partial square.

4.7 Snowflake

Students practice writing nested loops by drawing a snowflake.

Number of lines: 13

Commands: go(), left(),

right(), back()

Edge length:

 30 for the long arms

 10 for the short arms

Line width: 3

Angles used: 60, 120

Hint: The length 30 is made up of 20 + 10

53

4.8 Art Project

Students create their own rotated geometric pattern using nested loops.

Reminder: patterns must be

extruded in order to print as a

3D object.

Files should be saved, then

shared. Files can be submitted

to the Tina Turtle Gallery.

Possible questions for post-session discussion:

Review concepts learned in Section 4.

Students are reminded of which patterns

they have learned on the screen that

follows Art Project.

What is the main difference between the

code for the mosaic and the code for the

gear?

 The mosaic is just rotated around the origin by the number of times specified in the outer loop.

 The starting position for each partial square must be moved in the outer loop before starting the

next partial square.

Decompose angles to make different patterns (as in Gear), or lengths of a ray (as in Snowflake).

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. Students will receive a printable “Yellow Belt of Third Degree” certificate upon completion of

Section 4. See Assessment section for journal and project ideas.

Students Journal entries can be used as assessment.

The Art Project can be used as a performance task or portfolio artifact. Here is a possible 50-point

assignment card:

54

END OF SECTION 4: ART PROJECT (50 POINTS)

Objective: Create and publish a design created by at least one pair of nested loops, such as a rotated

shape or pattern, in Tina Turtle.

Planning (15 points): After you have decided on a design, draw out the shapes on grid paper or in your

journal.

 Describe the design. What commands will be needed? Name the object or pattern that you

are designing. If the drawing is complex, just draw the first few repetitions of the pattern.

 Looking at the design, decide which commands will be used. Will you need the back()

command to start the next part of the pattern? Where will you use goto() instead of

go()?

 If your design is composed of more than one repeated shape or pattern, write out the order in

which you will place them in the program. The color, width and extrude program lines

are already set up. Include the values that you choose for each one in your design notes.

Writing the code (25 points): Write the program.

 Remember to include comment lines that describe what your program is doing.

 Write the code and test as you go.

● Use at least one nested For loop in your design.

● Use some or all of the commands learned in Section 1 and 2:

go(), left(), right(), back(), up(), down() and goto()

Saving the file, sharing and publishing (10 points)

● Publish the design to your folder. Inform someone else about the game by providing the link

on ____________________________________, or by email.

55

SECTION 5 VARIABLES: LEVELS 5.1-5.8

Objectives: In this section, students learn to use variables in the For loop. Instead of i being defined as

one value, a fixed number of equal steps, i can now represent a range of values. These values can

change the outcome of each repetition of the loop. Any operation (addition, subtraction, multiplication,

division) can be used to include i in the commands, creating interesting linear and non-linear designs.

Vocabulary:

Variable: in terms of programming, variable is the name and value of something that will be recorded in

memory. In the For loop, the i is an index or counting variable. If we set i to a range of values, then i

will change each time the loop starts the body of the program. If we then use i as part of a command,

that command will output a different value each time.

Range: the range is the lower and upper limit of the variable i. Note that if the range is set with only one

value, then the lower limit of the range is assumed to be 0, with the number in the parentheses being

the upper limit. Important: the final value will be the difference between the upper and lower limit. For

example, in range (1,11), the final value used in the program is 10, or 11-1.

Angle: angle() resets Tina to a specific angle. tina.angle(0) will reset the turtle to face east.

Time required:

Time required will vary based on student ability and experience. Most students will complete this

section in about 3 hours. The Art Project will take about one hour.

Prerequisite skills:

Completion of Section 4. The level of difficulty in both concept and skill is increasing and you may find a

divergence in rate of success among your students, especially in the younger grades. An understanding

of patterns in operations (non-linear patterns in multiplication and division), properties of operations

(associative, distributive) and the order of operations is helpful, since the variable is being used as part

of the command expression. Negative numbers are used, so students will need some background in

integers. Experience with function input/output tables will also help students understand the impact of

increasing the variable each time the loop is run. Give students time to play with the values of lengths

and angles, similar to the demonstration in the video, to get a feel for how the variable changes the

program.

Background knowledge/Introductory Set/Purpose:

Explain the concepts of writing a program when you do not know the number of steps required in

advance. This is when we need the while statement. In these lessons, while is used as “while not

home”; in other words, the robot will repeat the actions until he reaches the home space.

56

How to use variables: show video (follow link on 5.1 or here) http://youtu.be/tJXRgo4M0qg

This video really is a case of “a picture is worth a thousand words”. The results created by using the

variable are impressive and inspiring.

Purpose: Section 5 (Levels 5.1-5.7) introduces the use of variables in For loops, and practices all

previous concepts and commands.

Direct Instruction and Modeling:

Show and discuss the steps on the instructional screens in 5.1 to the students, described in detail in

Level 5.1 below.

Individual/Group practice:

The program is designed to be used individually by students. Encourage peer support, sharing and

discussion.

http://youtu.be/tJXRgo4M0qg

57

Help card for Section 5: Variables and Ranges

 Writing Loops That Contain Variables (Example from 5.1)

for i in range(1,11): The first value of i will be 1, the last value

 will be 10, or (11-1). The way this range is

 written, i will only increase by 1 each time.

i is then called within the body of the loop. For example:

 tina.go(10*i) The first time, Tina will go 10*1, or 10.

 The second time, Tina will go 10*2, or 20.

 And so forth, until

 The last time, Tina will go 10*10, or 100.

 Here is the example from 5.1, in which Tina builds a staircase.

New command in Section 5

tina.angle(n), where n is the number of degrees. 0 degrees faces Tina

east.

58

Self-paced Instruction: Levels 5.1-5.7 (All previous commands may be needed but not necessarily

listed under each lesson. Defined objects are listed)

5.1 Pan Flute

Pan Flute begins with a YouTube video that explains the use of variables. The video can be viewed by

following this link:

http://youtu.be/tJXRgo4M0qg

The video demonstrates how to use the range variable as a counting variable.

In Tina, as in most programming languages, counting starts at 0 instead of 1. The video demonstrates

this by printing out a list of the range values.

The range variable can also be written as a list of starting and ending values (For i in range(1,101):).

Next, the video shows an example of how to use the counting variable inside the loop to draw a pattern.

Tina turns left 90 degrees, but each time she travels one unit further before turning. Students will be

impressed by the pattern that results (you may want to have them predict it first). The final two

examples show what happens to the pattern when the turn angle is changed by only one or two

degrees, which is an excellent opportunity to show why precision is important.

In the next two screens, the counting variable is used to draw a staircase.

First the range is described by the

starting and ending values.

 For I in range(1,11)

Next, Tina’s go commands are written to

go 10 spaces + i.

i will increase by 1 each time until the end value is reached.

In this example, starting i at 0 makes sense: adding i will not change the first length.

http://youtu.be/tJXRgo4M0qg

59

In Pan Flute, students draw the same staircase, but it is upside down. This program makes use of

negative numbers (tina.left(-90)), which may need to be explained to younger students who have not

yet learned integers. Turning left -90 is the same as turning right 90 degrees. Also, younger students

may not be familiar with the symbols used for multiplication and division on a computer (*, /). Apart

from the initial turn, the program is identical to the staircase example.

Number of lines: 10

Commands: go(), left()

Line length intervals: 10

After successfully submitting

the program, students will see

this reminder about range

values.

5.2 Ice Dome

In Ice Dome, students practice using the range variable to increase the drawing starting point and size

for each iteration.

Number of lines: 8

Commands: go(), left(),

right(), back()

Interval: 10

Encourage students to count the intervals carefully. The back command includes two operations.

Students must multiply i by 20, then add another 10 to get the correct starting position for the next V in

the dome.

60

5.3 Bookshelf

In Bookshelf, students continue practicing use of the range variables by drawing a bookshelf.

Number of lines: 8

Commands: go(), left(),

right(), back()

The line length for the go and back commands uses two operations, as in Ice Dome. This time, the

counting variable x the interval (10*i) is subtracted from the starting value (90).

5.4 Triangle Maze

In Triangle Maze, students use the range counting variable to draw a triangle maze.

Number of lines: 3

Commands: go(), left()

Basically the program just does

two things: go, and turn left. It

is similar to the example used

in the YouTube video in 5.1

Students might want to play with the turning angle and the number of iterations after they have found

the solution.

61

5.5 Square Maze

Students use the range counting variable to draw a square maze.

Number of lines: 7

Commands: go(), left()

Again, this is similar to the

square maze shown in the

video in 5.1

Students should pay attention

to line length in this maze.

5.6 Black Hole

Students create a pattern using the range variable.

Students often draw these patterns as an art project on grid paper, and it may be a good idea to have

them do this manually before attempting the code.

If students have this figure drawn on grid paper with the coordinate pairs of each end point labeled,

they should be able to see how these coordinates change in order to draw the next line.

Number of lines: 9

Commands: goto(),

angle(), go()

Vertices:

 (0,0)

 (0,100)

 (100,0)

 (100,100)

The suggested solution uses the goto command and coordinate pairs to draw the pattern.

Basically, the code goes around the figure 10 times with a set of 4 lines each time, advancing 10 to start

the next cycle. The variable i is used to change the start and end points of each line, based on distance

from the vertices’ coordinates. Angle resets Tina to 0 before starting the next cycle.

62

5.7 Factory

Students will create a factory using the range variable by drawing the figure of a “house” and repeating

it ten times. The challenge is to do this without lifting the pen, so no up, down or back commands.

Students should try this on paper before attempting the code. This is a classic puzzle: draw all the lines

without retracing any of them. The key is to go around the outside of the house first, then draw the

“bowtie” inside, ending up at the starting position of the next house. Each line will require a line of code

using the grid coordinates.

Number of lines: 11

Command: goto()

Hints for students:

 Do the coordinates change in the x direction? (Yes)

 By how much do they change for each house? (20, so we need to multiply i by 20 for each x

component)

 Do the coordinates change in the y direction? (No. Even though the houses are in different

places, their y components are all the same)

 Do we need the variable to describe the y component? (No, it can just be a number)

63

5.8 Art Project

Students create a printable design that incorporates range values into the loops.

Students can create a design

from scratch, or use a previous

design and experiment with it

using the variable.

Once the design is submitted, students will see

this screen.

The following screen grants them their Yellow Belt in the Fourth Degree certificate.

Questions for post-session discussion:

This level required more thought and understanding of math principles. What were the greatest

challenges?

What projects would you like to create using Creative Suite?

Assessment:

Assessment is built into the program. Students must complete a level successfully in order to unlock the

next level. Students will receive a printable “Yellow Belt of Fourth Degree” certificate upon completion

of Section 5. See Assessment section for journal and project ideas.

After completing Tina 1, students will be ready to start Tina 2 and learn more advanced programming

skills.

Students Journal entries can be used as assessment.

The Art Project can be used as a performance task or portfolio artifact. Here is a possible 50-point

assignment card:

64

END OF SECTION 5: ART PROJECT (50 POINTS)

Objective: Create and publish a design in Tina Turtle using a variable as part of a loop.

Planning (15 points): After you have decided on a design, draw out the shapes on grid paper or in your

journal. If your shape has a lot of repetitions (a large range in the variable), just draw the first few

steps. If you intend to 3D print the design, keep the shape simple and sturdy.

 Describe the design. What commands will be needed? Name the object or pattern that you

are designing.

 What range limits are you going to use?

 Will you use the different quadrants in the coordinate plane, and ordered pairs?

 Looking at the design, decide which commands will be used. Will you need the back()

command to start the next part of the pattern? Where will you use goto() instead of

go()?

 If your design is composed of more than one repeated shape or pattern, write out the order in

which you will place them in the program. The color, width and extrude program lines

are already set up. Include the values that you choose for each one in your design notes.

Writing the code (25 points): Write the program.

 Remember to include comment lines that describe what your program is doing.

 Write the code and test as you go.

● Use a variable in the For loop and define the range with a beginning and ending value.

● Use the variable in the body commands.

● Use some or all of the commands learned in Section 1 and 2:

go(), left(), right(), back(), up(), down() and goto()

Saving the file, sharing and publishing (10 points)

● Publish the design to your folder. Inform someone else about the game by providing the link

on ____________________________________, or by email.

65

NOTES

