
Karel Language Reference Manual

August 23, 20161

Contents

1 About this document 2

2 Language variants 2

3 Karel module in NCLab 2

4 Basic commands 2

5 Conditions 3

6 Loops 3

7 Custom commands 4

8 Logical expressions 5

9 GPS coordinates 5

10 Randomness 5

11 Variables 6

12 Lists 7

13 Functions 8

14 Recursion 8

15 The statement pass 9

1This document was prepared using the LATEX module in NCLab

1 About this document

This document covers selected basic functionality of Karel the Robot, and it is meant to be a
reference rather than a learning material. If you would like to learn computer programming
with Karel, take the NCLab’s self-paced Karel Programming Course. More about the course
can be found at https://nclab.com/karel/.

2 Language variants

Karel can be used with English, Spanish, German, Czech, Polish, Italian, and French com-
mands. All language versions of this document can be found in the menu of the Karel module.
Any of these seven languages can also be chosen in Settings to be the main language for
NCLab.

3 Karel module in NCLab

The Karel module in NCLab has four modes:

• Manual mode: Guide the robot using the mouse or keyboard

• Programming: Write and run programs.

• Designer: Design your own mazes.

• Games: Design your own games.

You can publish all your programs and games on the web and on social networks using the
function ”Publish to the web”.

4 Basic commands

Karel knows five basic commands that are equivalent to the five buttons in manual mode:

• go: Make one step forward.

• left: Turn 90 degrees left.

• right: Turn 90 degrees right.

• get: Collect an object from the ground.

• put: Put an object on the ground.

5 Conditions

The if-elif-else conditions help the robot check his surroundings and make decisions at
runtime. Notice the indentation. Every condition may have zero or more branches elif and
zero or one branch else. Example:

if wall

left

elif stone

right

elif rock

right

right

else

go

6 Loops

There are three types of loops: repeat, while, and for-in. The repeat loop is used when
the number of repetitions is known in advance:

repeat 5

go

The while loop should be used when we do not know in advance how many repetitions will
be needed:

while not wall

go

If we want to iterate over every element of a given sequence, it is convenient to use the loop
for-in. After the keyword for we write a name of a variable that will store the value of one
element of the given sequence (one iteration – one value). After the keyword in we write a
sequence, i.e., a list, a string, or a set of expressions, separated by the comma ,. Examples:

for x in [0, 1, 2, 3]

print x

for y in "Hello, World!"

print y

for z in 100, "Hi!", [10, 20]

print z

Every loop can contain basic commands, conditions, other loops, and custom commands.
Also, every loop may have the branch else. For example:

while wall

left

else

go

7 Custom commands

Custom commands should be defined for “smaller tasks” that are done more than once in
the program:

def turnback

repeat 2

left

Every custom command may have a set of local variables which are created during the time
of registration of a custom command. These local variables should be listed after the name
of a command and are usually called parameters. For example, the following command has
one parameter x:

def goForward(x)

repeat x

go

If we want to go 5 steps forward, we call the command goForward as follows:

goForward(5)

In this case, the number 5 is called an argument. Parameters of any command may have
their own default values:

def goForwardMore(x = 3)

repeat x

go

If a command has a parameter with a default value, we may omit the corresponding argu-
ment. For example, after the following call, Karel the Robot will be 3 steps ahead:

goForwardMore

8 Logical expressions

Keyword not means negation. It returns True if the operand is False and vice versa.
Example:

while not wall

go

Keyword and returns True if both statements are True, else it returns False. Example:

while not wall and not home

go

Keyword or returns True if at least one of the statements is True, otherwise it returns False.
Example:

if gem or nugget

get

9 GPS coordinates

Karel can retrieve his GPS coordinates using the commands gpsx and gpsy. In the Southwest
corner of the maze, both gpsx and gpsy are 0. In the Northeast corner, gpsx is 14 and gpsy

is 11. Both GPS coordinates can be used together with variables – see Section 11.

10 Randomness

The command rand returns randomly True or False. This allows Karel to make random
moves. Example:

if rand

left

else

right

Also, Karel has the function randint that returns a random integer number from the interval
[1, n], if the following call is used:

randint(n)

If we call

randint(m, n)

a random number from the interval [m, n] is returned. Here, m and n may be any integer
numbers. For example, the following call returns a random integer number from the interval
[10, 100]:

randint(10, 100)

11 Variables

Variables are used to store information. Names of Karel variables are case-sensitive, i.e., the
letter case matters. For example, the following two names are different: n and N. Names can
contain letters from various alphabets. For example, from English, Greek, Czech, Polish,
Russian, etc. alphabets. Karel knows three types of variables:

1. Numerical variables store integer and real numbers:

n1 = gpsx

n2 = gpsy

n3 = 15

n4 = 1000.5

They can be increased by one via the command inc and decreased by one via the
command dec:

inc(n1)

dec(n2)

They can also be increased or decreased by more than one:

inc(n1, 3)

dec(n2, 2)

We can perfom the basic mathematical operations with numbers: + (addition), - (sub-
traction), * (multiplication), / (division), % (modulus), ** (exponentiation). For exam-
ple:

n = 10

n + 12 - n / 2

Also, Karel allows us to use the following augmented assignment statements: +=, -=,
*=, /=, %=, **=, i.e, instead of writing:

a = 2

a = a + 5

a = a * 10

we can write:

a = 2

a += 5

a *= 10

2. Text variables store text strings:

my_name = "Karel"

my_surname = '...'

Karel can concatenate two or more strings using the operator +:

print 'Hello' + ", World" + '!' # Hello, World!

Also, every string can be “multiplied” by the given number:

'Hi' * 3

5 * "a"

The first expression returns the string HiHiHi. The second one – the string aaaaa. If we
want to check, if a certain substring belongs to another string, we may use the operator
in. The following expression returns the logical value True:

'aB' in 'AAaBBb'

3. Logical variables store logical values (True, False):

karel_is_west = (gpsx == 0)

karel_faces_north = north

Variables can be printed using the command print:

print "Value of n1 is", n1

or the function print():

print("Karel ", my_surname)

Every Karel code can contain either the statement(s) print or the function(s) print().
Both cases are not possible. Also, variables can be deleted using the statement del:

a = 14

b = 'Hello'
del a, b

12 Lists

Karel provides basic functionality of Python lists. As in Python, indices start with zero and
they can be negative:

• L = [] ... creates an empty list L.

• L = L1 + L2 ... concatenates two lists L1 and L2.

• L = L * n or L = n * L ... multiplies the list L1 n times.

• len(L) ... returns the length of the list L.

• L[i] ... returns item at position i.

• L.append(x) ... appends item x at the end of L.

• y = L.pop() ... removes and returns the last item from L.

• y = L.pop(i) ... removes and returns item at position i.

• y = L.pop(0) ... removes and returns the first item of L.

• expr in L ... returns True, if the expr belongs to the list L; otherwise, returns False.

• del L[i] ... removes item at position i.

13 Functions

Functions in Karel are similar to custom commands, but they can return values via the
command return. Example:

def measure_distance

n = 0

while not wall

inc(n)

go

return n

Custom functions may also have parameters and parameters with default values:

def sum(a, b, c = 10)

return a + b + c

14 Recursion

Karel is capable of recursion, which means that a custom command or function can call
itself. Example:

def climb_stairs

while wall

left

go

right

go

climb_stairs

Commands or functions can also be mutually recursive (function A calls function B and at
the same time function B calls function A).

15 The statement pass

Karel has the statement pass that does nothing. This statement is useful in several sit-
uations. For example, if you want to iterate over every element of the list [[], [0],

[’Hello’], [True, False]], but you still did not decide what to do with the empty list
[], you can use the statement pass:

for x in [[], [0], ['Hello'], [True, False]]

if x == []

pass

else

print x

